104 |
|
int i; |
105 |
|
|
106 |
|
vector<RealType> binMass(nBins_, 0.0); |
107 |
< |
vector<Vector3d> binVel(nBins_, V3Zero); |
107 |
> |
vector<Vector3d> binP(nBins_, V3Zero); |
108 |
|
vector<RealType> binKE(nBins_, 0.0); |
109 |
|
vector<unsigned int> binDof(nBins_, 0); |
110 |
– |
vector<unsigned int> binCount(nBins_, 0); |
110 |
|
|
112 |
– |
|
111 |
|
for (mol = info_->beginMolecule(mi); mol != NULL; |
112 |
|
mol = info_->nextMolecule(mi)) { |
113 |
|
|
115 |
|
|
116 |
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
117 |
|
rb = mol->nextRigidBody(rbIter)) { |
118 |
< |
rb->updateAtoms(); |
118 |
> |
rb->updateAtomVel(); |
119 |
|
} |
120 |
|
} |
121 |
|
|
135 |
|
|
136 |
|
int bin = getBin(pos); |
137 |
|
|
140 |
– |
binCount[bin] += 1; |
141 |
– |
|
138 |
|
binMass[bin] += m; |
139 |
< |
binVel[bin] += vel; |
139 |
> |
binP[bin] += m * vel; |
140 |
|
binKE[bin] += 0.5 * (m * vel.lengthSquare()); |
141 |
|
binDof[bin] += 3; |
142 |
|
|
166 |
|
PhysicalConstants::energyConvert); |
167 |
|
RealType den = binMass[i] * nBins_ * PhysicalConstants::densityConvert |
168 |
|
/ volume_; |
169 |
< |
Vector3d vel = binVel[i] / RealType(binCount[i]); |
169 |
> |
Vector3d vel = binP[i] / binMass[i]; |
170 |
> |
|
171 |
|
dynamic_cast<Accumulator *>(temperature->accumulator[i])->add(temp); |
172 |
|
dynamic_cast<VectorAccumulator *>(velocity->accumulator[i])->add(vel); |
173 |
|
dynamic_cast<Accumulator *>(density->accumulator[i])->add(den); |
228 |
|
int i; |
229 |
|
|
230 |
|
vector<RealType> binMass(nBins_, 0.0); |
231 |
< |
vector<Vector3d> binaVel(nBins_, V3Zero); |
231 |
> |
vector<Mat3x3d> binI(nBins_); |
232 |
> |
vector<Vector3d> binL(nBins_, V3Zero); |
233 |
|
vector<RealType> binKE(nBins_, 0.0); |
234 |
< |
vector<unsigned int> binDof(nBins_, 0); |
237 |
< |
vector<unsigned int> binCount(nBins_, 0); |
234 |
> |
vector<int> binDof(nBins_, 0); |
235 |
|
|
236 |
|
for (mol = info_->beginMolecule(mi); mol != NULL; |
237 |
|
mol = info_->nextMolecule(mi)) { |
240 |
|
|
241 |
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
242 |
|
rb = mol->nextRigidBody(rbIter)) { |
243 |
< |
rb->updateAtoms(); |
243 |
> |
rb->updateAtomVel(); |
244 |
|
} |
245 |
|
} |
246 |
|
|
252 |
|
|
253 |
|
for (sd = seleMan_.beginSelected(i); sd != NULL; |
254 |
|
sd = seleMan_.nextSelected(i)) { |
255 |
< |
|
255 |
> |
|
256 |
|
// figure out where that object is: |
257 |
+ |
int bin = getBin(sd->getPos() ); |
258 |
|
|
259 |
< |
Vector3d rPos = sd->getPos() - coordinateOrigin_; |
262 |
< |
Vector3d vel = sd->getVel(); |
263 |
< |
Vector3d aVel = cross(rPos, vel); |
264 |
< |
RealType m = sd->getMass(); |
259 |
> |
if (bin >= 0 && bin < nBins_) { |
260 |
|
|
261 |
< |
int bin = getBin(rPos); |
261 |
> |
Vector3d rPos = sd->getPos() - coordinateOrigin_; |
262 |
> |
Vector3d vel = sd->getVel(); |
263 |
> |
RealType m = sd->getMass(); |
264 |
> |
Vector3d L = m * cross(rPos, vel); |
265 |
> |
Mat3x3d I(0.0); |
266 |
> |
I = outProduct(rPos, rPos) * m; |
267 |
> |
RealType r2 = rPos.lengthSquare(); |
268 |
> |
I(0, 0) += m * r2; |
269 |
> |
I(1, 1) += m * r2; |
270 |
> |
I(2, 2) += m * r2; |
271 |
|
|
272 |
< |
binCount[bin] += 1; |
273 |
< |
|
274 |
< |
binMass[bin] += m; |
275 |
< |
binaVel[bin] += aVel; |
276 |
< |
binKE[bin] += 0.5 * (m * vel.lengthSquare()); |
277 |
< |
binDof[bin] += 3; |
278 |
< |
|
279 |
< |
if (sd->isDirectional()) { |
280 |
< |
Vector3d angMom = sd->getJ(); |
281 |
< |
Mat3x3d I = sd->getI(); |
282 |
< |
if (sd->isLinear()) { |
283 |
< |
int i = sd->linearAxis(); |
284 |
< |
int j = (i + 1) % 3; |
285 |
< |
int k = (i + 2) % 3; |
286 |
< |
binKE[bin] += 0.5 * (angMom[j] * angMom[j] / I(j, j) + |
287 |
< |
angMom[k] * angMom[k] / I(k, k)); |
288 |
< |
binDof[bin] += 2; |
289 |
< |
} else { |
290 |
< |
binKE[bin] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) + |
291 |
< |
angMom[1] * angMom[1] / I(1, 1) + |
292 |
< |
angMom[2] * angMom[2] / I(2, 2)); |
293 |
< |
binDof[bin] += 3; |
272 |
> |
binMass[bin] += m; |
273 |
> |
binI[bin] += I; |
274 |
> |
binL[bin] += L; |
275 |
> |
binKE[bin] += 0.5 * (m * vel.lengthSquare()); |
276 |
> |
binDof[bin] += 3; |
277 |
> |
|
278 |
> |
if (sd->isDirectional()) { |
279 |
> |
Vector3d angMom = sd->getJ(); |
280 |
> |
Mat3x3d Ia = sd->getI(); |
281 |
> |
if (sd->isLinear()) { |
282 |
> |
int i = sd->linearAxis(); |
283 |
> |
int j = (i + 1) % 3; |
284 |
> |
int k = (i + 2) % 3; |
285 |
> |
binKE[bin] += 0.5 * (angMom[j] * angMom[j] / Ia(j, j) + |
286 |
> |
angMom[k] * angMom[k] / Ia(k, k)); |
287 |
> |
binDof[bin] += 2; |
288 |
> |
} else { |
289 |
> |
binKE[bin] += 0.5 * (angMom[0] * angMom[0] / Ia(0, 0) + |
290 |
> |
angMom[1] * angMom[1] / Ia(1, 1) + |
291 |
> |
angMom[2] * angMom[2] / Ia(2, 2)); |
292 |
> |
binDof[bin] += 3; |
293 |
> |
} |
294 |
|
} |
295 |
|
} |
296 |
|
} |
302 |
|
RealType temp = 2.0 * binKE[i] / (binDof[i] * PhysicalConstants::kb * |
303 |
|
PhysicalConstants::energyConvert); |
304 |
|
RealType den = binMass[i] * 3.0 * PhysicalConstants::densityConvert |
305 |
< |
/ (4.0 * M_PI * (pow(router,3) - pow(rinner,3))); |
306 |
< |
Vector3d aVel = binaVel[i] / RealType(binCount[i]); |
305 |
> |
/ (4.0 * M_PI * (pow(router,3) - pow(rinner,3))); |
306 |
> |
|
307 |
> |
Vector3d omega = binI[i].inverse() * binL[i]; |
308 |
> |
|
309 |
|
dynamic_cast<Accumulator *>(temperature->accumulator[i])->add(temp); |
310 |
< |
dynamic_cast<VectorAccumulator *>(angularVelocity->accumulator[i])->add(aVel); |
310 |
> |
dynamic_cast<VectorAccumulator *>(angularVelocity->accumulator[i])->add(omega); |
311 |
|
dynamic_cast<Accumulator *>(density->accumulator[i])->add(den); |
312 |
|
dynamic_cast<Accumulator *>(counts_->accumulator[i])->add(1); |
313 |
|
} |