1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
*/ |
41 |
|
42 |
|
43 |
#include <algorithm> |
44 |
#include <fstream> |
45 |
#include "applications/staticProps/RNEMDStats.hpp" |
46 |
#include "primitives/Molecule.hpp" |
47 |
#include "utils/PhysicalConstants.hpp" |
48 |
|
49 |
namespace OpenMD { |
50 |
|
51 |
RNEMDZ::RNEMDZ(SimInfo* info, const std::string& filename, |
52 |
const std::string& sele, int nzbins) |
53 |
: SlabStatistics(info, filename, sele, nzbins) { |
54 |
|
55 |
setOutputName(getPrefix(filename) + ".rnemdZ"); |
56 |
|
57 |
temperature = new OutputData; |
58 |
temperature->units = "K"; |
59 |
temperature->title = "Temperature"; |
60 |
temperature->dataType = odtReal; |
61 |
temperature->dataHandling = odhAverage; |
62 |
temperature->accumulator.reserve(nBins_); |
63 |
for (int i = 0; i < nBins_; i++) |
64 |
temperature->accumulator.push_back( new Accumulator() ); |
65 |
data_.push_back(temperature); |
66 |
|
67 |
velocity = new OutputData; |
68 |
velocity->units = "angstroms/fs"; |
69 |
velocity->title = "Velocity"; |
70 |
velocity->dataType = odtVector3; |
71 |
velocity->dataHandling = odhAverage; |
72 |
velocity->accumulator.reserve(nBins_); |
73 |
for (int i = 0; i < nBins_; i++) |
74 |
velocity->accumulator.push_back( new VectorAccumulator() ); |
75 |
data_.push_back(velocity); |
76 |
|
77 |
density = new OutputData; |
78 |
density->units = "g cm^-3"; |
79 |
density->title = "Density"; |
80 |
density->dataType = odtReal; |
81 |
density->dataHandling = odhAverage; |
82 |
density->accumulator.reserve(nBins_); |
83 |
for (int i = 0; i < nBins_; i++) |
84 |
density->accumulator.push_back( new Accumulator() ); |
85 |
data_.push_back(density); |
86 |
} |
87 |
|
88 |
void RNEMDZ::processFrame(int istep) { |
89 |
RealType z; |
90 |
|
91 |
hmat_ = currentSnapshot_->getHmat(); |
92 |
for (int i = 0; i < nBins_; i++) { |
93 |
z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat_(2,2); |
94 |
dynamic_cast<Accumulator*>(z_->accumulator[i])->add(z); |
95 |
} |
96 |
volume_ = currentSnapshot_->getVolume(); |
97 |
|
98 |
|
99 |
Molecule* mol; |
100 |
RigidBody* rb; |
101 |
StuntDouble* sd; |
102 |
SimInfo::MoleculeIterator mi; |
103 |
Molecule::RigidBodyIterator rbIter; |
104 |
int i; |
105 |
|
106 |
vector<RealType> binMass(nBins_, 0.0); |
107 |
vector<RealType> binPx(nBins_, 0.0); |
108 |
vector<RealType> binPy(nBins_, 0.0); |
109 |
vector<RealType> binPz(nBins_, 0.0); |
110 |
vector<RealType> binKE(nBins_, 0.0); |
111 |
vector<unsigned int> binDof(nBins_, 0); |
112 |
vector<unsigned int> binCount(nBins_, 0); |
113 |
|
114 |
|
115 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
116 |
mol = info_->nextMolecule(mi)) { |
117 |
|
118 |
// change the positions of atoms which belong to the rigidbodies |
119 |
|
120 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
121 |
rb = mol->nextRigidBody(rbIter)) { |
122 |
rb->updateAtomVel(); |
123 |
} |
124 |
} |
125 |
|
126 |
if (evaluator_.isDynamic()) { |
127 |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
128 |
} |
129 |
|
130 |
// loop over the selected atoms: |
131 |
|
132 |
for (sd = seleMan_.beginSelected(i); sd != NULL; |
133 |
sd = seleMan_.nextSelected(i)) { |
134 |
|
135 |
// figure out where that object is: |
136 |
Vector3d pos = sd->getPos(); |
137 |
Vector3d vel = sd->getVel(); |
138 |
RealType m = sd->getMass(); |
139 |
|
140 |
int bin = getBin(pos); |
141 |
|
142 |
binCount[bin] += 1; |
143 |
|
144 |
binMass[bin] += m; |
145 |
binPx[bin] += m * vel.x(); |
146 |
binPy[bin] += m * vel.y(); |
147 |
binPz[bin] += m * vel.z(); |
148 |
binKE[bin] += 0.5 * (m * vel.lengthSquare()); |
149 |
binDof[bin] += 3; |
150 |
|
151 |
if (sd->isDirectional()) { |
152 |
Vector3d angMom = sd->getJ(); |
153 |
Mat3x3d I = sd->getI(); |
154 |
if (sd->isLinear()) { |
155 |
int i = sd->linearAxis(); |
156 |
int j = (i + 1) % 3; |
157 |
int k = (i + 2) % 3; |
158 |
binKE[bin] += 0.5 * (angMom[j] * angMom[j] / I(j, j) + |
159 |
angMom[k] * angMom[k] / I(k, k)); |
160 |
binDof[bin] += 2; |
161 |
} else { |
162 |
binKE[bin] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) + |
163 |
angMom[1] * angMom[1] / I(1, 1) + |
164 |
angMom[2] * angMom[2] / I(2, 2)); |
165 |
binDof[bin] += 3; |
166 |
} |
167 |
} |
168 |
} |
169 |
|
170 |
for (unsigned int i = 0; i < nBins_; i++) { |
171 |
|
172 |
if (binDof[i] > 0) { |
173 |
RealType temp = 2.0 * binKE[i] / (binDof[i] * PhysicalConstants::kb * |
174 |
PhysicalConstants::energyConvert); |
175 |
RealType den = binMass[i] * nBins_ * PhysicalConstants::densityConvert |
176 |
/ volume_; |
177 |
Vector3d vel; |
178 |
vel.x() = binPx[i] / binMass[i]; |
179 |
vel.y() = binPy[i] / binMass[i]; |
180 |
vel.z() = binPz[i] / binMass[i]; |
181 |
|
182 |
dynamic_cast<Accumulator *>(temperature->accumulator[i])->add(temp); |
183 |
dynamic_cast<VectorAccumulator *>(velocity->accumulator[i])->add(vel); |
184 |
dynamic_cast<Accumulator *>(density->accumulator[i])->add(den); |
185 |
dynamic_cast<Accumulator *>(counts_->accumulator[i])->add(1); |
186 |
} |
187 |
} |
188 |
} |
189 |
|
190 |
void RNEMDZ::processStuntDouble(StuntDouble* sd, int bin) { |
191 |
} |
192 |
|
193 |
RNEMDR::RNEMDR(SimInfo* info, const std::string& filename, |
194 |
const std::string& sele, int nrbins) |
195 |
: ShellStatistics(info, filename, sele, nrbins) { |
196 |
|
197 |
|
198 |
setOutputName(getPrefix(filename) + ".rnemdR"); |
199 |
|
200 |
temperature = new OutputData; |
201 |
temperature->units = "K"; |
202 |
temperature->title = "Temperature"; |
203 |
temperature->dataType = odtReal; |
204 |
temperature->dataHandling = odhAverage; |
205 |
temperature->accumulator.reserve(nBins_); |
206 |
for (int i = 0; i < nBins_; i++) |
207 |
temperature->accumulator.push_back( new Accumulator() ); |
208 |
data_.push_back(temperature); |
209 |
|
210 |
angularVelocity = new OutputData; |
211 |
angularVelocity->units = "angstroms^2/fs"; |
212 |
angularVelocity->title = "Velocity"; |
213 |
angularVelocity->dataType = odtVector3; |
214 |
angularVelocity->dataHandling = odhAverage; |
215 |
angularVelocity->accumulator.reserve(nBins_); |
216 |
for (int i = 0; i < nBins_; i++) |
217 |
angularVelocity->accumulator.push_back( new VectorAccumulator() ); |
218 |
data_.push_back(angularVelocity); |
219 |
|
220 |
density = new OutputData; |
221 |
density->units = "g cm^-3"; |
222 |
density->title = "Density"; |
223 |
density->dataType = odtReal; |
224 |
density->dataHandling = odhAverage; |
225 |
density->accumulator.reserve(nBins_); |
226 |
for (int i = 0; i < nBins_; i++) |
227 |
density->accumulator.push_back( new Accumulator() ); |
228 |
data_.push_back(density); |
229 |
} |
230 |
|
231 |
|
232 |
void RNEMDR::processFrame(int istep) { |
233 |
|
234 |
Molecule* mol; |
235 |
RigidBody* rb; |
236 |
StuntDouble* sd; |
237 |
SimInfo::MoleculeIterator mi; |
238 |
Molecule::RigidBodyIterator rbIter; |
239 |
int i; |
240 |
|
241 |
vector<RealType> binMass(nBins_, 0.0); |
242 |
vector<Vector3d> binaVel(nBins_, V3Zero); |
243 |
vector<RealType> binKE(nBins_, 0.0); |
244 |
vector<unsigned int> binDof(nBins_, 0); |
245 |
vector<unsigned int> binCount(nBins_, 0); |
246 |
|
247 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
248 |
mol = info_->nextMolecule(mi)) { |
249 |
|
250 |
// change the positions of atoms which belong to the rigidbodies |
251 |
|
252 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
253 |
rb = mol->nextRigidBody(rbIter)) { |
254 |
rb->updateAtomVel(); |
255 |
} |
256 |
} |
257 |
|
258 |
if (evaluator_.isDynamic()) { |
259 |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
260 |
} |
261 |
|
262 |
// loop over the selected atoms: |
263 |
|
264 |
for (sd = seleMan_.beginSelected(i); sd != NULL; |
265 |
sd = seleMan_.nextSelected(i)) { |
266 |
|
267 |
// figure out where that object is: |
268 |
|
269 |
Vector3d rPos = sd->getPos() - coordinateOrigin_; |
270 |
Vector3d vel = sd->getVel(); |
271 |
Vector3d aVel = cross(rPos, vel); |
272 |
RealType m = sd->getMass(); |
273 |
|
274 |
int bin = getBin(rPos); |
275 |
|
276 |
binCount[bin] += 1; |
277 |
|
278 |
binMass[bin] += m; |
279 |
binaVel[bin] += aVel; |
280 |
binKE[bin] += 0.5 * (m * vel.lengthSquare()); |
281 |
binDof[bin] += 3; |
282 |
|
283 |
if (sd->isDirectional()) { |
284 |
Vector3d angMom = sd->getJ(); |
285 |
Mat3x3d I = sd->getI(); |
286 |
if (sd->isLinear()) { |
287 |
int i = sd->linearAxis(); |
288 |
int j = (i + 1) % 3; |
289 |
int k = (i + 2) % 3; |
290 |
binKE[bin] += 0.5 * (angMom[j] * angMom[j] / I(j, j) + |
291 |
angMom[k] * angMom[k] / I(k, k)); |
292 |
binDof[bin] += 2; |
293 |
} else { |
294 |
binKE[bin] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) + |
295 |
angMom[1] * angMom[1] / I(1, 1) + |
296 |
angMom[2] * angMom[2] / I(2, 2)); |
297 |
binDof[bin] += 3; |
298 |
} |
299 |
} |
300 |
} |
301 |
|
302 |
for (unsigned int i = 0; i < nBins_; i++) { |
303 |
RealType rinner = (RealType)i * binWidth_; |
304 |
RealType router = (RealType)(i+1) * binWidth_; |
305 |
if (binDof[i] > 0) { |
306 |
RealType temp = 2.0 * binKE[i] / (binDof[i] * PhysicalConstants::kb * |
307 |
PhysicalConstants::energyConvert); |
308 |
RealType den = binMass[i] * 3.0 * PhysicalConstants::densityConvert |
309 |
/ (4.0 * M_PI * (pow(router,3) - pow(rinner,3))); |
310 |
Vector3d aVel = binaVel[i] / RealType(binCount[i]); |
311 |
dynamic_cast<Accumulator *>(temperature->accumulator[i])->add(temp); |
312 |
dynamic_cast<VectorAccumulator *>(angularVelocity->accumulator[i])->add(aVel); |
313 |
dynamic_cast<Accumulator *>(density->accumulator[i])->add(den); |
314 |
dynamic_cast<Accumulator *>(counts_->accumulator[i])->add(1); |
315 |
} |
316 |
} |
317 |
} |
318 |
|
319 |
|
320 |
void RNEMDR::processStuntDouble(StuntDouble* sd, int bin) { |
321 |
} |
322 |
} |
323 |
|