1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
*/ |
41 |
|
42 |
|
43 |
#include <algorithm> |
44 |
#include <fstream> |
45 |
#include "applications/staticProps/RNEMDStats.hpp" |
46 |
#include "primitives/Molecule.hpp" |
47 |
#include "utils/PhysicalConstants.hpp" |
48 |
|
49 |
namespace OpenMD { |
50 |
|
51 |
RNEMDZ::RNEMDZ(SimInfo* info, const std::string& filename, |
52 |
const std::string& sele, int nzbins) |
53 |
: SlabStatistics(info, filename, sele, nzbins) { |
54 |
|
55 |
setOutputName(getPrefix(filename) + ".rnemdZ"); |
56 |
|
57 |
temperature = new OutputData; |
58 |
temperature->units = "K"; |
59 |
temperature->title = "Temperature"; |
60 |
temperature->dataType = odtReal; |
61 |
temperature->dataHandling = odhAverage; |
62 |
temperature->accumulator.reserve(nBins_); |
63 |
for (int i = 0; i < nBins_; i++) |
64 |
temperature->accumulator.push_back( new Accumulator() ); |
65 |
data_.push_back(temperature); |
66 |
|
67 |
velocity = new OutputData; |
68 |
velocity->units = "angstroms/fs"; |
69 |
velocity->title = "Velocity"; |
70 |
velocity->dataType = odtVector3; |
71 |
velocity->dataHandling = odhAverage; |
72 |
velocity->accumulator.reserve(nBins_); |
73 |
for (int i = 0; i < nBins_; i++) |
74 |
velocity->accumulator.push_back( new VectorAccumulator() ); |
75 |
data_.push_back(velocity); |
76 |
|
77 |
density = new OutputData; |
78 |
density->units = "g cm^-3"; |
79 |
density->title = "Density"; |
80 |
density->dataType = odtReal; |
81 |
density->dataHandling = odhAverage; |
82 |
density->accumulator.reserve(nBins_); |
83 |
for (int i = 0; i < nBins_; i++) |
84 |
density->accumulator.push_back( new Accumulator() ); |
85 |
data_.push_back(density); |
86 |
} |
87 |
|
88 |
void RNEMDZ::processFrame(int istep) { |
89 |
RealType z; |
90 |
|
91 |
hmat_ = currentSnapshot_->getHmat(); |
92 |
for (int i = 0; i < nBins_; i++) { |
93 |
z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat_(2,2); |
94 |
dynamic_cast<Accumulator*>(z_->accumulator[i])->add(z); |
95 |
} |
96 |
volume_ = currentSnapshot_->getVolume(); |
97 |
|
98 |
|
99 |
Molecule* mol; |
100 |
RigidBody* rb; |
101 |
StuntDouble* sd; |
102 |
SimInfo::MoleculeIterator mi; |
103 |
Molecule::RigidBodyIterator rbIter; |
104 |
int i; |
105 |
|
106 |
vector<RealType> binMass(nBins_, 0.0); |
107 |
vector<Vector3d> binVel(nBins_, V3Zero); |
108 |
vector<RealType> binKE(nBins_, 0.0); |
109 |
vector<unsigned int> binDof(nBins_, 0); |
110 |
vector<unsigned int> binCount(nBins_, 0); |
111 |
|
112 |
|
113 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
114 |
mol = info_->nextMolecule(mi)) { |
115 |
|
116 |
// change the positions of atoms which belong to the rigidbodies |
117 |
|
118 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
119 |
rb = mol->nextRigidBody(rbIter)) { |
120 |
rb->updateAtoms(); |
121 |
} |
122 |
} |
123 |
|
124 |
if (evaluator_.isDynamic()) { |
125 |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
126 |
} |
127 |
|
128 |
// loop over the selected atoms: |
129 |
|
130 |
for (sd = seleMan_.beginSelected(i); sd != NULL; |
131 |
sd = seleMan_.nextSelected(i)) { |
132 |
|
133 |
// figure out where that object is: |
134 |
Vector3d pos = sd->getPos(); |
135 |
Vector3d vel = sd->getVel(); |
136 |
RealType m = sd->getMass(); |
137 |
|
138 |
int bin = getBin(pos); |
139 |
|
140 |
binCount[bin] += 1; |
141 |
|
142 |
binMass[bin] += m; |
143 |
binVel[bin] += vel; |
144 |
binKE[bin] += 0.5 * (m * vel.lengthSquare()); |
145 |
binDof[bin] += 3; |
146 |
|
147 |
if (sd->isDirectional()) { |
148 |
Vector3d angMom = sd->getJ(); |
149 |
Mat3x3d I = sd->getI(); |
150 |
if (sd->isLinear()) { |
151 |
int i = sd->linearAxis(); |
152 |
int j = (i + 1) % 3; |
153 |
int k = (i + 2) % 3; |
154 |
binKE[bin] += 0.5 * (angMom[j] * angMom[j] / I(j, j) + |
155 |
angMom[k] * angMom[k] / I(k, k)); |
156 |
binDof[bin] += 2; |
157 |
} else { |
158 |
binKE[bin] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) + |
159 |
angMom[1] * angMom[1] / I(1, 1) + |
160 |
angMom[2] * angMom[2] / I(2, 2)); |
161 |
binDof[bin] += 3; |
162 |
} |
163 |
} |
164 |
} |
165 |
|
166 |
for (unsigned int i = 0; i < nBins_; i++) { |
167 |
|
168 |
if (binDof[i] > 0) { |
169 |
RealType temp = 2.0 * binKE[i] / (binDof[i] * PhysicalConstants::kb * |
170 |
PhysicalConstants::energyConvert); |
171 |
RealType den = binMass[i] * nBins_ * PhysicalConstants::densityConvert |
172 |
/ volume_; |
173 |
Vector3d vel = binVel[i] / RealType(binCount[i]); |
174 |
dynamic_cast<Accumulator *>(temperature->accumulator[i])->add(temp); |
175 |
dynamic_cast<VectorAccumulator *>(velocity->accumulator[i])->add(vel); |
176 |
dynamic_cast<Accumulator *>(density->accumulator[i])->add(den); |
177 |
dynamic_cast<Accumulator *>(counts_->accumulator[i])->add(1); |
178 |
} |
179 |
} |
180 |
} |
181 |
|
182 |
void RNEMDZ::processStuntDouble(StuntDouble* sd, int bin) { |
183 |
} |
184 |
|
185 |
RNEMDR::RNEMDR(SimInfo* info, const std::string& filename, |
186 |
const std::string& sele, int nrbins) |
187 |
: ShellStatistics(info, filename, sele, nrbins) { |
188 |
|
189 |
|
190 |
setOutputName(getPrefix(filename) + ".rnemdR"); |
191 |
|
192 |
temperature = new OutputData; |
193 |
temperature->units = "K"; |
194 |
temperature->title = "Temperature"; |
195 |
temperature->dataType = odtReal; |
196 |
temperature->dataHandling = odhAverage; |
197 |
temperature->accumulator.reserve(nBins_); |
198 |
for (int i = 0; i < nBins_; i++) |
199 |
temperature->accumulator.push_back( new Accumulator() ); |
200 |
data_.push_back(temperature); |
201 |
|
202 |
angularVelocity = new OutputData; |
203 |
angularVelocity->units = "angstroms^2/fs"; |
204 |
angularVelocity->title = "Velocity"; |
205 |
angularVelocity->dataType = odtVector3; |
206 |
angularVelocity->dataHandling = odhAverage; |
207 |
angularVelocity->accumulator.reserve(nBins_); |
208 |
for (int i = 0; i < nBins_; i++) |
209 |
angularVelocity->accumulator.push_back( new VectorAccumulator() ); |
210 |
data_.push_back(angularVelocity); |
211 |
|
212 |
density = new OutputData; |
213 |
density->units = "g cm^-3"; |
214 |
density->title = "Density"; |
215 |
density->dataType = odtReal; |
216 |
density->dataHandling = odhAverage; |
217 |
density->accumulator.reserve(nBins_); |
218 |
for (int i = 0; i < nBins_; i++) |
219 |
density->accumulator.push_back( new Accumulator() ); |
220 |
data_.push_back(density); |
221 |
} |
222 |
|
223 |
void RNEMDR::processStuntDouble(StuntDouble* sd, int bin) { |
224 |
RealType mass = sd->getMass(); |
225 |
Vector3d vel = sd->getVel(); |
226 |
Vector3d rPos = sd->getPos() - coordinateOrigin_; |
227 |
Vector3d aVel = cross(rPos, vel); |
228 |
|
229 |
RealType KE = 0.5 * (mass * vel.lengthSquare()); |
230 |
int dof = 3; |
231 |
|
232 |
if (sd->isDirectional()) { |
233 |
Vector3d angMom = sd->getJ(); |
234 |
Mat3x3d I = sd->getI(); |
235 |
if (sd->isLinear()) { |
236 |
int i = sd->linearAxis(); |
237 |
int j = (i + 1) % 3; |
238 |
int k = (i + 2) % 3; |
239 |
KE += 0.5 * (angMom[j] * angMom[j] / I(j, j) + |
240 |
angMom[k] * angMom[k] / I(k, k)); |
241 |
dof += 2; |
242 |
} else { |
243 |
KE += 0.5 * (angMom[0] * angMom[0] / I(0, 0) + |
244 |
angMom[1] * angMom[1] / I(1, 1) + |
245 |
angMom[2] * angMom[2] / I(2, 2)); |
246 |
dof += 3; |
247 |
} |
248 |
} |
249 |
|
250 |
RealType temp = 2.0 * KE / (dof * PhysicalConstants::kb * |
251 |
PhysicalConstants::energyConvert); |
252 |
|
253 |
RealType rinner = (RealType)bin * binWidth_; |
254 |
RealType router = (RealType)(bin+1) * binWidth_; |
255 |
RealType den = mass * 3.0 * PhysicalConstants::densityConvert |
256 |
/ (4.0 * M_PI * (pow(router,3) - pow(rinner,3))); |
257 |
|
258 |
dynamic_cast<Accumulator *>(temperature->accumulator[bin])->add(temp); |
259 |
dynamic_cast<VectorAccumulator *>(angularVelocity->accumulator[bin])->add(aVel); |
260 |
dynamic_cast<Accumulator *>(density->accumulator[bin])->add(den); |
261 |
|
262 |
} |
263 |
} |
264 |
|