1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [4] , Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). * |
41 |
*/ |
42 |
|
43 |
#include <algorithm> |
44 |
#include <fstream> |
45 |
#include "applications/staticProps/NitrileFrequencyMap.hpp" |
46 |
#include "utils/simError.h" |
47 |
#include "io/DumpReader.hpp" |
48 |
#include "primitives/Molecule.hpp" |
49 |
#include "brains/Thermo.hpp" |
50 |
|
51 |
namespace OpenMD { |
52 |
|
53 |
NitrileFrequencyMap::NitrileFrequencyMap(SimInfo* info, |
54 |
const std::string& filename, |
55 |
const std::string& sele1, |
56 |
int nbins) |
57 |
: StaticAnalyser(info, filename), selectionScript1_(sele1), |
58 |
evaluator1_(info), seleMan1_(info), nBins_(nbins), info_(info) { |
59 |
|
60 |
setOutputName(getPrefix(filename) + ".freqs"); |
61 |
|
62 |
evaluator1_.loadScriptString(sele1); |
63 |
if (!evaluator1_.isDynamic()) { |
64 |
seleMan1_.setSelectionSet(evaluator1_.evaluate()); |
65 |
} |
66 |
|
67 |
count_.resize(nBins_); |
68 |
histogram_.resize(nBins_); |
69 |
|
70 |
freqs_.resize(info_->getNGlobalMolecules()); |
71 |
|
72 |
minFreq_ = -50; |
73 |
maxFreq_ = 50; |
74 |
|
75 |
// Values from Choi et. al. "Nitrile and thiocyanate IR probes: |
76 |
// Quantum chemistry calculation studies and multivariate |
77 |
// least-square ļ¬tting analysis," J. Chem. Phys. 128, 134506 (2008). |
78 |
// |
79 |
// These map site electrostatic potentials onto frequency shifts |
80 |
// in the same energy units that one computes the total potential. |
81 |
|
82 |
frequencyMap_["CN"] = 0.0801; |
83 |
frequencyMap_["NC"] = 0.00521; |
84 |
frequencyMap_["RCHar3"] = -0.00182; |
85 |
frequencyMap_["SigmaN"] = 0.00157; |
86 |
frequencyMap_["PiN"] = -0.00167; |
87 |
frequencyMap_["PiC"] = -0.00896; |
88 |
|
89 |
ForceField* forceField_ = info_->getForceField(); |
90 |
set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
91 |
PairList* excludes = info_->getExcludedInteractions(); |
92 |
int nAtoms = info->getSnapshotManager()->getCurrentSnapshot()->getNumberOfAtoms(); |
93 |
|
94 |
RealType rcut; |
95 |
if (info_->getSimParams()->haveCutoffRadius()) { |
96 |
rcut = info_->getSimParams()->getCutoffRadius(); |
97 |
} else { |
98 |
rcut = 12.0; |
99 |
} |
100 |
|
101 |
EF_ = V3Zero; |
102 |
|
103 |
std::vector<RealType> ef; |
104 |
bool efSpec = false; |
105 |
|
106 |
if (info_->getSimParams()->haveElectricField()) { |
107 |
efSpec = true; |
108 |
ef = info_->getSimParams()->getElectricField(); |
109 |
} |
110 |
if (info_->getSimParams()->haveUniformField()) { |
111 |
efSpec = true; |
112 |
ef = info_->getSimParams()->getUniformField(); |
113 |
} |
114 |
if (efSpec) { |
115 |
if (ef.size() != 3) { |
116 |
sprintf(painCave.errMsg, |
117 |
"NitrileFrequencyMap: Incorrect number of parameters specified for uniformField.\n" |
118 |
"\tthere should be 3 parameters, but %lu were specified.\n", ef.size()); |
119 |
painCave.isFatal = 1; |
120 |
simError(); |
121 |
} |
122 |
EF_.x() = ef[0]; |
123 |
EF_.y() = ef[1]; |
124 |
EF_.z() = ef[2]; |
125 |
} |
126 |
|
127 |
excludesForAtom.clear(); |
128 |
excludesForAtom.resize(nAtoms); |
129 |
|
130 |
for (int i = 0; i < nAtoms; i++) { |
131 |
for (int j = 0; j < nAtoms; j++) { |
132 |
if (excludes->hasPair(i, j)) |
133 |
excludesForAtom[i].push_back(j); |
134 |
} |
135 |
} |
136 |
|
137 |
electrostatic_ = new Electrostatic(); |
138 |
electrostatic_->setSimInfo(info_); |
139 |
electrostatic_->setForceField(forceField_); |
140 |
electrostatic_->setSimulatedAtomTypes(atypes); |
141 |
electrostatic_->setCutoffRadius(rcut); |
142 |
} |
143 |
|
144 |
bool NitrileFrequencyMap::excludeAtomPair(int atom1, int atom2) { |
145 |
|
146 |
for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
147 |
i != excludesForAtom[atom1].end(); ++i) { |
148 |
if ( (*i) == atom2 ) return true; |
149 |
} |
150 |
|
151 |
return false; |
152 |
} |
153 |
|
154 |
void NitrileFrequencyMap::process() { |
155 |
Molecule* mol; |
156 |
RigidBody* rb; |
157 |
Atom* atom; |
158 |
AtomType* atype; |
159 |
SimInfo::MoleculeIterator mi; |
160 |
Molecule::RigidBodyIterator rbIter; |
161 |
Molecule::AtomIterator ai2; |
162 |
Atom* atom2; |
163 |
StuntDouble* sd1; |
164 |
int ii, sdID, molID, sdID2; |
165 |
RealType li; |
166 |
RealType sPot, s1, s2; |
167 |
RealType freqShift; |
168 |
std::string name; |
169 |
map<string,RealType>::iterator fi; |
170 |
bool excluded; |
171 |
const RealType chrgToKcal = 23.0609; |
172 |
|
173 |
DumpReader reader(info_, dumpFilename_); |
174 |
int nFrames = reader.getNFrames(); |
175 |
|
176 |
nProcessed_ = nFrames/step_; |
177 |
|
178 |
std::fill(histogram_.begin(), histogram_.end(), 0.0); |
179 |
std::fill(count_.begin(), count_.end(), 0); |
180 |
|
181 |
for (int istep = 0; istep < nFrames; istep += step_) { |
182 |
reader.readFrame(istep); |
183 |
currentSnapshot_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
184 |
|
185 |
std::fill(freqs_.begin(), freqs_.end(), 0.0); |
186 |
|
187 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
188 |
mol = info_->nextMolecule(mi)) { |
189 |
//change the positions of atoms which belong to the rigidbodies |
190 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
191 |
rb = mol->nextRigidBody(rbIter)) { |
192 |
rb->updateAtoms(); |
193 |
} |
194 |
} |
195 |
|
196 |
if (evaluator1_.isDynamic()) { |
197 |
seleMan1_.setSelectionSet(evaluator1_.evaluate()); |
198 |
} |
199 |
|
200 |
for (sd1 = seleMan1_.beginSelected(ii); |
201 |
sd1 != NULL; |
202 |
sd1 = seleMan1_.nextSelected(ii)) { |
203 |
|
204 |
sdID = sd1->getGlobalIndex(); |
205 |
molID = info_->getGlobalMolMembership(sdID); |
206 |
mol = info_->getMoleculeByGlobalIndex(molID); |
207 |
|
208 |
Vector3d CNcentroid = mol->getRigidBodyAt(2)->getPos(); |
209 |
Vector3d ra = sd1->getPos(); |
210 |
|
211 |
atom = dynamic_cast<Atom *>(sd1); |
212 |
atype = atom->getAtomType(); |
213 |
name = atype->getName(); |
214 |
fi = frequencyMap_.find(name); |
215 |
if ( fi != frequencyMap_.end() ) { |
216 |
li = (*fi).second; |
217 |
} else { |
218 |
// throw error |
219 |
sprintf( painCave.errMsg, |
220 |
"NitrileFrequencyMap::process: Unknown atype requested.\n" |
221 |
"\t(Selection specified %s .)\n", |
222 |
name.c_str() ); |
223 |
painCave.isFatal = 1; |
224 |
simError(); |
225 |
} |
226 |
|
227 |
sPot = sd1->getSitePotential(); |
228 |
|
229 |
// Subtract out the contribution from every other site on this molecule: |
230 |
for(atom2 = mol->beginAtom(ai2); atom2 != NULL; |
231 |
atom2 = mol->nextAtom(ai2)) { |
232 |
|
233 |
sdID2 = atom2->getGlobalIndex(); |
234 |
if (sdID == sdID2) { |
235 |
excluded = true; |
236 |
} else { |
237 |
excluded = excludeAtomPair(sdID, sdID2); |
238 |
} |
239 |
|
240 |
electrostatic_->getSitePotentials(atom, atom2, excluded, s1, s2); |
241 |
|
242 |
sPot -= s1; |
243 |
} |
244 |
|
245 |
// Add the contribution from the electric field: |
246 |
|
247 |
sPot += dot(EF_, ra - CNcentroid) * chrgToKcal ; |
248 |
|
249 |
freqShift = sPot * li; |
250 |
|
251 |
// convert the kcal/mol energies to wavenumbers: |
252 |
freqShift *= 349.757; |
253 |
|
254 |
freqs_[molID] += freqShift; |
255 |
} |
256 |
|
257 |
for (int i = 0; i < info_->getNGlobalMolecules(); ++i) { |
258 |
int binNo = int(nBins_ * (freqs_[i] - minFreq_)/(maxFreq_-minFreq_)); |
259 |
|
260 |
count_[binNo]++; |
261 |
} |
262 |
} |
263 |
|
264 |
processHistogram(); |
265 |
writeProbs(); |
266 |
|
267 |
} |
268 |
|
269 |
void NitrileFrequencyMap::processHistogram() { |
270 |
|
271 |
int atot = 0; |
272 |
for(unsigned int i = 0; i < count_.size(); ++i) |
273 |
atot += count_[i]; |
274 |
|
275 |
for(unsigned int i = 0; i < count_.size(); ++i) { |
276 |
histogram_[i] = double(count_[i] / double(atot)); |
277 |
} |
278 |
} |
279 |
|
280 |
void NitrileFrequencyMap::writeProbs() { |
281 |
|
282 |
std::ofstream rdfStream(outputFilename_.c_str()); |
283 |
if (rdfStream.is_open()) { |
284 |
rdfStream << "#NitrileFrequencyMap\n"; |
285 |
rdfStream << "#nFrames:\t" << nProcessed_ << "\n"; |
286 |
rdfStream << "#selection1: (" << selectionScript1_ << ")"; |
287 |
rdfStream << "\n"; |
288 |
rdfStream << "#nu\tp(nu))\n"; |
289 |
for (unsigned int i = 0; i < histogram_.size(); ++i) { |
290 |
RealType freq = minFreq_ + (RealType)(i)*(maxFreq_-minFreq_) / |
291 |
(RealType)histogram_.size(); |
292 |
rdfStream << freq << "\t" << histogram_[i] << "\n"; |
293 |
} |
294 |
|
295 |
} else { |
296 |
|
297 |
sprintf(painCave.errMsg, "NitrileFrequencyMap: unable to open %s\n", |
298 |
outputFilename_.c_str()); |
299 |
painCave.isFatal = 1; |
300 |
simError(); |
301 |
} |
302 |
|
303 |
rdfStream.close(); |
304 |
} |
305 |
|
306 |
} |
307 |
|