1 |
/* Copyright (c) 2006, 2009, 2010 The University of Notre Dame. All Rights Reserved. |
2 |
* |
3 |
* The University of Notre Dame grants you ("Licensee") a |
4 |
* non-exclusive, royalty free, license to use, modify and |
5 |
* redistribute this software in source and binary code form, provided |
6 |
* that the following conditions are met: |
7 |
* |
8 |
* 1. Redistributions of source code must retain the above copyright |
9 |
* notice, this list of conditions and the following disclaimer. |
10 |
* |
11 |
* 2. Redistributions in binary form must reproduce the above copyright |
12 |
* notice, this list of conditions and the following disclaimer in the |
13 |
* documentation and/or other materials provided with the |
14 |
* distribution. |
15 |
* |
16 |
* This software is provided "AS IS," without a warranty of any |
17 |
* kind. All express or implied conditions, representations and |
18 |
* warranties, including any implied warranty of merchantability, |
19 |
* fitness for a particular purpose or non-infringement, are hereby |
20 |
* excluded. The University of Notre Dame and its licensors shall not |
21 |
* be liable for any damages suffered by licensee as a result of |
22 |
* using, modifying or distributing the software or its |
23 |
* derivatives. In no event will the University of Notre Dame or its |
24 |
* licensors be liable for any lost revenue, profit or data, or for |
25 |
* direct, indirect, special, consequential, incidental or punitive |
26 |
* damages, however caused and regardless of the theory of liability, |
27 |
* arising out of the use of or inability to use software, even if the |
28 |
* University of Notre Dame has been advised of the possibility of |
29 |
* such damages. |
30 |
* |
31 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
32 |
* research, please cite the appropriate papers when you publish your |
33 |
* work. Good starting points are: |
34 |
* |
35 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
36 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
37 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
38 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
39 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
40 |
*/ |
41 |
|
42 |
#include "applications/staticProps/NanoLength.hpp" |
43 |
#include "utils/simError.h" |
44 |
#include "io/DumpReader.hpp" |
45 |
#include "primitives/Molecule.hpp" |
46 |
#include "utils/NumericConstant.hpp" |
47 |
|
48 |
using namespace OpenMD; |
49 |
|
50 |
bool pairComparator( const evIndex& l, const evIndex& r) { |
51 |
return l.first < r.first; |
52 |
} |
53 |
|
54 |
NanoLength::NanoLength(SimInfo* info, |
55 |
const std::string& filename, |
56 |
const std::string& sele) |
57 |
: StaticAnalyser(info, filename), selectionScript_(sele), evaluator_(info), seleMan_(info) { |
58 |
setOutputName(getPrefix(filename) + ".length"); |
59 |
|
60 |
osq.open(getOutputFileName().c_str()); |
61 |
|
62 |
evaluator_.loadScriptString(sele); |
63 |
if (!evaluator_.isDynamic()) { |
64 |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
65 |
} |
66 |
frameCounter_ = 0; |
67 |
} |
68 |
|
69 |
void NanoLength::process() { |
70 |
Molecule* mol; |
71 |
RigidBody* rb; |
72 |
SimInfo::MoleculeIterator mi; |
73 |
Molecule::RigidBodyIterator rbIter; |
74 |
StuntDouble* sd; |
75 |
Vector3d vec; |
76 |
int i; |
77 |
|
78 |
DumpReader reader(info_, dumpFilename_); |
79 |
int nFrames = reader.getNFrames(); |
80 |
frameCounter_ = 0; |
81 |
|
82 |
theAtoms_.reserve(info_->getNGlobalAtoms()); |
83 |
|
84 |
for (int istep = 0; istep < nFrames; istep += step_) { |
85 |
reader.readFrame(istep); |
86 |
frameCounter_++; |
87 |
currentSnapshot_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
88 |
RealType time = currentSnapshot_->getTime(); |
89 |
|
90 |
// Clear pos vector between each frame. |
91 |
theAtoms_.clear(); |
92 |
|
93 |
if (evaluator_.isDynamic()) { |
94 |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
95 |
} |
96 |
|
97 |
// update the positions of atoms which belong to the rigidbodies |
98 |
|
99 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
100 |
mol = info_->nextMolecule(mi)) { |
101 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
102 |
rb = mol->nextRigidBody(rbIter)) { |
103 |
rb->updateAtoms(); |
104 |
} |
105 |
} |
106 |
|
107 |
// outer loop is over the selected StuntDoubles: |
108 |
|
109 |
for (sd = seleMan_.beginSelected(i); sd != NULL; |
110 |
sd = seleMan_.nextSelected(i)) { |
111 |
theAtoms_.push_back(sd); |
112 |
} |
113 |
|
114 |
RealType rodLength = getLength(theAtoms_); |
115 |
|
116 |
osq.precision(7); |
117 |
if (osq.is_open()){ |
118 |
osq << time << "\t" << rodLength << std::endl; |
119 |
} |
120 |
} |
121 |
} |
122 |
|
123 |
RealType NanoLength::getLength(std::vector<StuntDouble*> atoms) { |
124 |
Vector3d COM(0.0); |
125 |
RealType mass = 0.0; |
126 |
RealType mtmp; |
127 |
for (std::vector<StuntDouble*>::iterator i = atoms.begin(); |
128 |
i != atoms.end(); ++i) { |
129 |
mtmp = (*i)->getMass(); |
130 |
mass += mtmp; |
131 |
COM += (*i)->getPos() * mtmp; |
132 |
} |
133 |
COM /= mass; |
134 |
|
135 |
// Moment of Inertia calculation |
136 |
Mat3x3d Itmp(0.0); |
137 |
for (std::vector<StuntDouble*>::iterator i = atoms.begin(); |
138 |
i != atoms.end(); ++i) { |
139 |
|
140 |
Mat3x3d IAtom(0.0); |
141 |
mtmp = (*i)->getMass(); |
142 |
Vector3d delta = (*i)->getPos() - COM; |
143 |
IAtom -= outProduct(delta, delta) * mtmp; |
144 |
RealType r2 = delta.lengthSquare(); |
145 |
IAtom(0, 0) += mtmp * r2; |
146 |
IAtom(1, 1) += mtmp * r2; |
147 |
IAtom(2, 2) += mtmp * r2; |
148 |
Itmp += IAtom; |
149 |
} |
150 |
|
151 |
//diagonalize |
152 |
Vector3d evals; |
153 |
Mat3x3d evects; |
154 |
Mat3x3d::diagonalize(Itmp, evals, evects); |
155 |
|
156 |
// we need to re-order the axes so that the smallest moment of |
157 |
// inertia (which corresponds to the long axis of the rod) is |
158 |
// along the z-axis. We'll just reverse the order of the three |
159 |
// axes. Python has an argsort function, but we had to invent our |
160 |
// own: |
161 |
|
162 |
std::vector<evIndex> evals_prime; |
163 |
for (int i = 0; i < 3; i++) |
164 |
evals_prime.push_back(std::make_pair(evals[i], i)); |
165 |
std::sort(evals_prime.begin(), evals_prime.end(), pairComparator); |
166 |
|
167 |
RotMat3x3d A; |
168 |
Mat3x3d I; |
169 |
|
170 |
for (int i = 0; i < 3; i++) { |
171 |
int index = evals_prime[2-i].second; |
172 |
A.setColumn(i, evects.getColumn(index)); |
173 |
I(i,i) = evals[index]; |
174 |
} |
175 |
|
176 |
// now project the delta from the center of mass onto the long |
177 |
// axis of the object |
178 |
|
179 |
Vector3d longAxis = A.getColumn(2); |
180 |
RealType axisLength = longAxis.length(); |
181 |
RealType projmin = 0.0; |
182 |
RealType projmax = 0.0; |
183 |
|
184 |
for (std::vector<StuntDouble*>::iterator i = atoms.begin(); |
185 |
i != atoms.end(); ++i) { |
186 |
Vector3d delta = (*i)->getPos() - COM; |
187 |
RealType projection = dot(delta, longAxis) / axisLength; |
188 |
if (projection > projmax) projmax = projection; |
189 |
if (projection < projmin) projmin = projection; |
190 |
} |
191 |
|
192 |
return projmax - projmin; |
193 |
} |
194 |
|
195 |
|