1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [4] , Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#include "applications/staticProps/HBondGeometric.hpp" |
44 |
#include "utils/simError.h" |
45 |
#include "io/DumpReader.hpp" |
46 |
#include "primitives/Molecule.hpp" |
47 |
#include "utils/NumericConstant.hpp" |
48 |
|
49 |
#include <vector> |
50 |
|
51 |
namespace OpenMD { |
52 |
|
53 |
HBondGeometric::HBondGeometric(SimInfo* info, |
54 |
const std::string& filename, |
55 |
const std::string& sele1, |
56 |
const std::string& sele2, |
57 |
double rCut, double thetaCut, int nbins) : |
58 |
StaticAnalyser(info, filename), |
59 |
selectionScript1_(sele1), evaluator1_(info), seleMan1_(info), |
60 |
selectionScript2_(sele2), evaluator2_(info), seleMan2_(info){ |
61 |
|
62 |
setOutputName(getPrefix(filename) + ".hbg"); |
63 |
|
64 |
ff_ = info_->getForceField(); |
65 |
|
66 |
evaluator1_.loadScriptString(sele1); |
67 |
if (!evaluator1_.isDynamic()) { |
68 |
seleMan1_.setSelectionSet(evaluator1_.evaluate()); |
69 |
} |
70 |
evaluator2_.loadScriptString(sele2); |
71 |
if (!evaluator2_.isDynamic()) { |
72 |
seleMan2_.setSelectionSet(evaluator2_.evaluate()); |
73 |
} |
74 |
|
75 |
// Set up cutoff values: |
76 |
|
77 |
rCut_ = rCut; |
78 |
thetaCut_ = thetaCut; |
79 |
nBins_ = nbins; |
80 |
|
81 |
nHBonds_.resize(nBins_); |
82 |
nDonor_.resize(nBins_); |
83 |
nAcceptor_.resize(nBins_); |
84 |
|
85 |
initializeHistogram(); |
86 |
} |
87 |
|
88 |
HBondGeometric::~HBondGeometric() { |
89 |
nHBonds_.clear(); |
90 |
nDonor_.clear(); |
91 |
nAcceptor_.clear(); |
92 |
} |
93 |
|
94 |
void HBondGeometric::initializeHistogram() { |
95 |
std::fill(nHBonds_.begin(), nHBonds_.end(), 0); |
96 |
std::fill(nDonor_.begin(), nDonor_.end(), 0); |
97 |
std::fill(nAcceptor_.begin(), nAcceptor_.end(), 0); |
98 |
nSelected_ = 0; |
99 |
} |
100 |
|
101 |
void HBondGeometric::process() { |
102 |
Molecule* mol1; |
103 |
Molecule* mol2; |
104 |
RigidBody* rb1; |
105 |
Molecule::HBondDonor* hbd1; |
106 |
Molecule::HBondDonor* hbd2; |
107 |
std::vector<Molecule::HBondDonor*>::iterator hbdi; |
108 |
std::vector<Molecule::HBondDonor*>::iterator hbdj; |
109 |
std::vector<Atom*>::iterator hbai; |
110 |
std::vector<Atom*>::iterator hbaj; |
111 |
Atom* hba1; |
112 |
Atom* hba2; |
113 |
SimInfo::MoleculeIterator mi; |
114 |
Molecule::RigidBodyIterator rbIter; |
115 |
Molecule::IntegrableObjectIterator ioi; |
116 |
Vector3d dPos; |
117 |
Vector3d aPos; |
118 |
Vector3d hPos; |
119 |
Vector3d DH; |
120 |
Vector3d DA; |
121 |
RealType DAdist, DHdist, theta, ctheta; |
122 |
int ii, jj; |
123 |
int nHB, nA, nD; |
124 |
|
125 |
DumpReader reader(info_, dumpFilename_); |
126 |
int nFrames = reader.getNFrames(); |
127 |
frameCounter_ = 0; |
128 |
|
129 |
for (int istep = 0; istep < nFrames; istep += step_) { |
130 |
reader.readFrame(istep); |
131 |
frameCounter_++; |
132 |
currentSnapshot_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
133 |
|
134 |
// update the positions of atoms which belong to the rigidbodies |
135 |
|
136 |
for (mol1 = info_->beginMolecule(mi); mol1 != NULL; |
137 |
mol1 = info_->nextMolecule(mi)) { |
138 |
for (rb1 = mol1->beginRigidBody(rbIter); rb1 != NULL; |
139 |
rb1 = mol1->nextRigidBody(rbIter)) { |
140 |
rb1->updateAtoms(); |
141 |
} |
142 |
} |
143 |
|
144 |
if (evaluator1_.isDynamic()) { |
145 |
seleMan1_.setSelectionSet(evaluator1_.evaluate()); |
146 |
} |
147 |
if (evaluator2_.isDynamic()) { |
148 |
seleMan2_.setSelectionSet(evaluator2_.evaluate()); |
149 |
} |
150 |
|
151 |
for (mol1 = seleMan1_.beginSelectedMolecule(ii); |
152 |
mol1 != NULL; mol1 = seleMan1_.nextSelectedMolecule(ii)) { |
153 |
|
154 |
// We're collecting statistics on the molecules in selection 1: |
155 |
nHB = 0; |
156 |
nA = 0; |
157 |
nD = 0; |
158 |
|
159 |
for (mol2 = seleMan2_.beginSelectedMolecule(jj); |
160 |
mol2 != NULL; mol2 = seleMan2_.nextSelectedMolecule(jj)) { |
161 |
|
162 |
// loop over the possible donors in molecule 1: |
163 |
for (hbd1 = mol1->beginHBondDonor(hbdi); hbd1 != NULL; |
164 |
hbd1 = mol1->nextHBondDonor(hbdi)) { |
165 |
dPos = hbd1->donorAtom->getPos(); |
166 |
hPos = hbd1->donatedHydrogen->getPos(); |
167 |
DH = hPos - dPos; |
168 |
currentSnapshot_->wrapVector(DH); |
169 |
DHdist = DH.length(); |
170 |
|
171 |
// loop over the possible acceptors in molecule 2: |
172 |
for (hba2 = mol2->beginHBondAcceptor(hbaj); hba2 != NULL; |
173 |
hba2 = mol2->nextHBondAcceptor(hbaj)) { |
174 |
aPos = hba2->getPos(); |
175 |
DA = aPos - dPos; |
176 |
currentSnapshot_->wrapVector(DA); |
177 |
DAdist = DA.length(); |
178 |
|
179 |
// Distance criteria: are the donor and acceptor atoms |
180 |
// close enough? |
181 |
if (DAdist < rCut_) { |
182 |
|
183 |
ctheta = dot(DH, DA) / (DHdist * DAdist); |
184 |
theta = acos(ctheta) * 180.0 / M_PI; |
185 |
|
186 |
// Angle criteria: are the D-H and D-A and vectors close? |
187 |
if (theta < thetaCut_) { |
188 |
// molecule 1 is a Hbond donor: |
189 |
nHB++; |
190 |
nD++; |
191 |
} |
192 |
} |
193 |
} |
194 |
} |
195 |
|
196 |
// now loop over the possible acceptors in molecule 1: |
197 |
for (hba1 = mol1->beginHBondAcceptor(hbai); hba1 != NULL; |
198 |
hba1 = mol1->nextHBondAcceptor(hbai)) { |
199 |
aPos = hba1->getPos(); |
200 |
|
201 |
// loop over the possible donors in molecule 2: |
202 |
for (hbd2 = mol2->beginHBondDonor(hbdj); hbd2 != NULL; |
203 |
hbd2 = mol2->nextHBondDonor(hbdj)) { |
204 |
dPos = hbd2->donorAtom->getPos(); |
205 |
|
206 |
DA = aPos - dPos; |
207 |
currentSnapshot_->wrapVector(DA); |
208 |
DAdist = DA.length(); |
209 |
|
210 |
// Distance criteria: are the donor and acceptor atoms |
211 |
// close enough? |
212 |
if (DAdist < rCut_) { |
213 |
hPos = hbd2->donatedHydrogen->getPos(); |
214 |
DH = hPos - dPos; |
215 |
currentSnapshot_->wrapVector(DH); |
216 |
DHdist = DH.length(); |
217 |
ctheta = dot(DH, DA) / (DHdist * DAdist); |
218 |
theta = acos(ctheta) * 180.0 / M_PI; |
219 |
// Angle criteria: are the D-H and D-A and vectors close? |
220 |
if (theta < thetaCut_) { |
221 |
// molecule 1 is a Hbond acceptor: |
222 |
nHB++; |
223 |
nA++; |
224 |
} |
225 |
} |
226 |
} |
227 |
} |
228 |
} |
229 |
collectHistogram(nHB, nA, nD); |
230 |
} |
231 |
} |
232 |
writeHistogram(); |
233 |
} |
234 |
|
235 |
|
236 |
void HBondGeometric::collectHistogram(int nHB, int nA, int nD) { |
237 |
nHBonds_[nHB] += 1; |
238 |
nAcceptor_[nA] += 1; |
239 |
nDonor_[nD] += 1; |
240 |
nSelected_++; |
241 |
} |
242 |
|
243 |
|
244 |
void HBondGeometric::writeHistogram() { |
245 |
|
246 |
std::ofstream osq(getOutputFileName().c_str()); |
247 |
|
248 |
if (osq.is_open()) { |
249 |
|
250 |
osq << "# HydrogenBonding Statistics\n"; |
251 |
osq << "# selection1: (" << selectionScript1_ << ")" |
252 |
<< "\tselection2: (" << selectionScript2_ << ")\n"; |
253 |
osq << "# molecules in selection1: " << nSelected_ << "\n"; |
254 |
osq << "# nHBonds\tnAcceptor\tnDonor\tp(nHBonds)\tp(nAcceptor)\tp(nDonor)\n"; |
255 |
// Normalize by number of frames and write it out: |
256 |
for (int i = 0; i < nBins_; ++i) { |
257 |
osq << i; |
258 |
osq << "\t" << nHBonds_[i]; |
259 |
osq << "\t" << nAcceptor_[i]; |
260 |
osq << "\t" << nDonor_[i]; |
261 |
osq << "\t" << (RealType) (nHBonds_[i]) / nSelected_; |
262 |
osq << "\t" << (RealType) (nAcceptor_[i]) / nSelected_; |
263 |
osq << "\t" << (RealType) (nDonor_[i]) / nSelected_; |
264 |
osq << "\n"; |
265 |
} |
266 |
osq.close(); |
267 |
|
268 |
} else { |
269 |
sprintf(painCave.errMsg, "HBondGeometric: unable to open %s\n", |
270 |
(getOutputFileName() + "q").c_str()); |
271 |
painCave.isFatal = 1; |
272 |
simError(); |
273 |
} |
274 |
} |
275 |
} |
276 |
|
277 |
|
278 |
|
279 |
|