ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/applications/staticProps/HBondGeometric.cpp
Revision: 2049
Committed: Tue Jan 6 21:44:10 2015 UTC (10 years, 3 months ago) by gezelter
File size: 11188 byte(s)
Log Message:
Added Geometric HBond StaticProps module.

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [4] , Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42
43 #include "applications/staticProps/HBondGeometric.hpp"
44 #include "utils/simError.h"
45 #include "io/DumpReader.hpp"
46 #include "primitives/Molecule.hpp"
47 #include "utils/NumericConstant.hpp"
48
49 #include <vector>
50
51 namespace OpenMD {
52
53 HBondGeometric::HBondGeometric(SimInfo* info,
54 const std::string& filename,
55 const std::string& sele1,
56 const std::string& sele2,
57 double rCut, double thetaCut, int nbins) :
58 StaticAnalyser(info, filename),
59 selectionScript1_(sele1), evaluator1_(info), seleMan1_(info),
60 selectionScript2_(sele2), evaluator2_(info), seleMan2_(info){
61
62 setOutputName(getPrefix(filename) + ".hbg");
63
64 ff_ = info_->getForceField();
65
66 evaluator1_.loadScriptString(sele1);
67 if (!evaluator1_.isDynamic()) {
68 seleMan1_.setSelectionSet(evaluator1_.evaluate());
69 }
70 evaluator2_.loadScriptString(sele2);
71 if (!evaluator2_.isDynamic()) {
72 seleMan2_.setSelectionSet(evaluator2_.evaluate());
73 }
74
75 // Set up cutoff values:
76
77 rCut_ = rCut;
78 thetaCut_ = thetaCut;
79 nBins_ = nbins;
80
81 nHBonds_.resize(nBins_);
82 nDonor_.resize(nBins_);
83 nAcceptor_.resize(nBins_);
84 }
85
86 HBondGeometric::~HBondGeometric() {
87 nHBonds_.clear();
88 nDonor_.clear();
89 nAcceptor_.clear();
90 }
91
92 void HBondGeometric::initializeHistogram() {
93 std::fill(nHBonds_.begin(), nHBonds_.end(), 0);
94 std::fill(nDonor_.begin(), nDonor_.end(), 0);
95 std::fill(nAcceptor_.begin(), nAcceptor_.end(), 0);
96 nSelected_ = 0;
97 }
98
99
100
101 void HBondGeometric::process() {
102 Molecule* mol;
103 StuntDouble* sd1;
104 StuntDouble* sd2;
105 RigidBody* rb1;
106 RigidBody* rb2;
107 SimInfo::MoleculeIterator mi;
108 Molecule::RigidBodyIterator rbIter;
109 Molecule::IntegrableObjectIterator ioi;
110 int ii, jj;
111 std::string rbName;
112 std::vector<Atom *> atoms1;
113 std::vector<Atom *> atoms2;
114 std::vector<Atom *>::iterator ai1;
115 std::vector<Atom *>::iterator ai2;
116 Vector3d O1pos, O2pos;
117 Vector3d H1apos, H1bpos, H2apos, H2bpos;
118 int nHB, nA, nD;
119
120 DumpReader reader(info_, dumpFilename_);
121 int nFrames = reader.getNFrames();
122 frameCounter_ = 0;
123
124 for (int istep = 0; istep < nFrames; istep += step_) {
125 reader.readFrame(istep);
126 frameCounter_++;
127 currentSnapshot_ = info_->getSnapshotManager()->getCurrentSnapshot();
128
129 // update the positions of atoms which belong to the rigidbodies
130
131 for (mol = info_->beginMolecule(mi); mol != NULL;
132 mol = info_->nextMolecule(mi)) {
133 for (rb1 = mol->beginRigidBody(rbIter); rb1 != NULL;
134 rb1 = mol->nextRigidBody(rbIter)) {
135 rb1->updateAtoms();
136 }
137 }
138
139 if (evaluator1_.isDynamic()) {
140 seleMan1_.setSelectionSet(evaluator1_.evaluate());
141 }
142 if (evaluator2_.isDynamic()) {
143 seleMan2_.setSelectionSet(evaluator2_.evaluate());
144 }
145
146 for (sd1 = seleMan1_.beginSelected(ii); sd1 != NULL; sd1 = seleMan1_.nextSelected(ii)) {
147 if (sd1->isRigidBody()) {
148 rb1 = dynamic_cast<RigidBody*>(sd1);
149 atoms1 = rb1->getAtoms();
150
151 int nH = 0;
152 int nO = 0;
153
154 for (ai1 = atoms1.begin(); ai1 != atoms1.end(); ++ai1) {
155 std::string atName = (*ai1)->getType();
156 // query the force field for the AtomType associated with this
157 // atomTypeName:
158 AtomType* at = ff_->getAtomType(atName);
159 // get the chain of base types for this atom type:
160 std::vector<AtomType*> ayb = at->allYourBase();
161 // use the last type in the chain of base types for the name:
162 std::string bn = ayb[ayb.size()-1]->getName();
163
164 bool isH = bn.compare("H") == 0 ? true : false;
165 bool isO = bn.compare("O") == 0 ? true : false;
166
167 if (isO && nO == 0) {
168 O1pos = (*ai1)->getPos();
169 nO++;
170 }
171 if (isH) {
172 if (nH == 0) {
173 H1apos = (*ai1)->getPos();
174 }
175 if (nH == 1) {
176 H1bpos = (*ai1)->getPos();
177 }
178 nH++;
179 }
180 }
181 }
182
183
184 nHB = 0;
185 nA = 0;
186 nD = 0;
187
188 for (sd2 = seleMan2_.beginSelected(jj); sd2 != NULL; sd2 = seleMan2_.nextSelected(jj)) {
189
190 if (sd1 == sd2) continue;
191
192 if (sd2->isRigidBody()) {
193 rb2 = dynamic_cast<RigidBody*>(sd2);
194 atoms2 = rb2->getAtoms();
195
196 int nH = 0;
197 int nO = 0;
198
199 for (ai2 = atoms2.begin(); ai2 != atoms2.end(); ++ai2) {
200 std::string atName = (*ai2)->getType();
201 // query the force field for the AtomType associated with this
202 // atomTypeName:
203 AtomType* at = ff_->getAtomType(atName);
204 // get the chain of base types for this atom type:
205 std::vector<AtomType*> ayb = at->allYourBase();
206 // use the last type in the chain of base types for the name:
207 std::string bn = ayb[ayb.size()-1]->getName();
208
209 bool isH = bn.compare("H") == 0 ? true : false;
210 bool isO = bn.compare("O") == 0 ? true : false;
211
212 if (isO && nO == 0) {
213 O2pos = (*ai2)->getPos();
214 nO++;
215 }
216 if (isH) {
217 if (nH == 0) {
218 H2apos = (*ai2)->getPos();
219 }
220 if (nH == 1) {
221 H2bpos = (*ai2)->getPos();
222 }
223 nH++;
224 }
225 }
226
227 // Do our testing:
228 Vector3d Odiff = O2pos - O1pos;
229 currentSnapshot_->wrapVector(Odiff);
230 RealType Odist = Odiff.length();
231 if (Odist < rCut_) {
232 // OH vectors:
233 Vector3d HO1a = H1apos - O1pos;
234 Vector3d HO1b = H1bpos - O1pos;
235 Vector3d HO2a = H2apos - O2pos;
236 Vector3d HO2b = H2bpos - O2pos;
237 // wrapped in case a molecule is split across boundaries:
238 currentSnapshot_->wrapVector(HO1a);
239 currentSnapshot_->wrapVector(HO1b);
240 currentSnapshot_->wrapVector(HO2a);
241 currentSnapshot_->wrapVector(HO2a);
242 // cos thetas:
243 RealType ctheta1a = dot(HO1a, Odiff) / (Odist * HO1a.length());
244 RealType ctheta1b = dot(HO1b, Odiff) / (Odist * HO1b.length());
245 RealType ctheta2a = dot(HO2a, -Odiff) / (Odist * HO2a.length());
246 RealType ctheta2b = dot(HO2b, -Odiff) / (Odist * HO2b.length());
247
248 RealType theta1a = acos(ctheta1a) * 180.0 / M_PI;
249 RealType theta1b = acos(ctheta1b) * 180.0 / M_PI;
250 RealType theta2a = acos(ctheta2a) * 180.0 / M_PI;
251 RealType theta2b = acos(ctheta2b) * 180.0 / M_PI;
252
253 if (theta1a < thetaCut_) {
254 // molecule 1 is a Hbond donor:
255 nHB++;
256 nD++;
257 }
258 if (theta1b < thetaCut_) {
259 // molecule 1 is a Hbond donor:
260 nHB++;
261 nD++;
262 }
263 if (theta2a < thetaCut_) {
264 // molecule 1 is a Hbond acceptor:
265 nHB++;
266 nA++;
267 }
268 if (theta2b < thetaCut_) {
269 // molecule 1 is a Hbond acceptor:
270 nHB++;
271 nA++;
272 }
273 }
274 }
275 }
276 collectHistogram(nHB, nA, nD);
277 }
278 }
279 writeHistogram();
280 }
281
282
283 void HBondGeometric::collectHistogram(int nHB, int nA, int nD) {
284 nHBonds_[nHB] += 1;
285 nAcceptor_[nA] += 1;
286 nDonor_[nD] += 1;
287 nSelected_++;
288 }
289
290
291 void HBondGeometric::writeHistogram() {
292
293 std::ofstream osq(getOutputFileName().c_str());
294 cerr << "nSelected = " << nSelected_ << "\n";
295
296 if (osq.is_open()) {
297
298 osq << "# HydrogenBonding Statistics\n";
299 osq << "# selection1: (" << selectionScript1_ << ")"
300 << "\tselection2: (" << selectionScript2_ << ")\n";
301 osq << "# p(nHBonds)\tp(nAcceptor)\tp(nDonor)\n";
302 // Normalize by number of frames and write it out:
303 for (int i = 0; i < nBins_; ++i) {
304 osq << i;
305 osq << "\t" << (RealType) (nHBonds_[i]) / nSelected_;
306 osq << "\t" << (RealType) (nAcceptor_[i]) / nSelected_;
307 osq << "\t" << (RealType) (nDonor_[i]) / nSelected_;
308 osq << "\n";
309 }
310 osq.close();
311
312 } else {
313 sprintf(painCave.errMsg, "HBondGeometric: unable to open %s\n",
314 (getOutputFileName() + "q").c_str());
315 painCave.isFatal = 1;
316 simError();
317 }
318 }
319 }
320
321
322
323

Properties

Name Value
svn:eol-style native
svn:executable *