1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [4] , Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#include "applications/staticProps/HBondGeometric.hpp" |
44 |
#include "utils/simError.h" |
45 |
#include "io/DumpReader.hpp" |
46 |
#include "primitives/Molecule.hpp" |
47 |
#include "utils/NumericConstant.hpp" |
48 |
|
49 |
#include <vector> |
50 |
|
51 |
namespace OpenMD { |
52 |
|
53 |
HBondGeometric::HBondGeometric(SimInfo* info, |
54 |
const std::string& filename, |
55 |
const std::string& sele1, |
56 |
const std::string& sele2, |
57 |
double rCut, double thetaCut, int nbins) : |
58 |
StaticAnalyser(info, filename), |
59 |
selectionScript1_(sele1), evaluator1_(info), seleMan1_(info), |
60 |
selectionScript2_(sele2), evaluator2_(info), seleMan2_(info){ |
61 |
|
62 |
setOutputName(getPrefix(filename) + ".hbg"); |
63 |
|
64 |
ff_ = info_->getForceField(); |
65 |
|
66 |
evaluator1_.loadScriptString(sele1); |
67 |
if (!evaluator1_.isDynamic()) { |
68 |
seleMan1_.setSelectionSet(evaluator1_.evaluate()); |
69 |
} |
70 |
evaluator2_.loadScriptString(sele2); |
71 |
if (!evaluator2_.isDynamic()) { |
72 |
seleMan2_.setSelectionSet(evaluator2_.evaluate()); |
73 |
} |
74 |
|
75 |
// Set up cutoff values: |
76 |
|
77 |
rCut_ = rCut; |
78 |
thetaCut_ = thetaCut; |
79 |
nBins_ = nbins; |
80 |
|
81 |
nHBonds_.resize(nBins_); |
82 |
nDonor_.resize(nBins_); |
83 |
nAcceptor_.resize(nBins_); |
84 |
} |
85 |
|
86 |
HBondGeometric::~HBondGeometric() { |
87 |
nHBonds_.clear(); |
88 |
nDonor_.clear(); |
89 |
nAcceptor_.clear(); |
90 |
} |
91 |
|
92 |
void HBondGeometric::initializeHistogram() { |
93 |
std::fill(nHBonds_.begin(), nHBonds_.end(), 0); |
94 |
std::fill(nDonor_.begin(), nDonor_.end(), 0); |
95 |
std::fill(nAcceptor_.begin(), nAcceptor_.end(), 0); |
96 |
nSelected_ = 0; |
97 |
} |
98 |
|
99 |
|
100 |
|
101 |
void HBondGeometric::process() { |
102 |
Molecule* mol; |
103 |
StuntDouble* sd1; |
104 |
StuntDouble* sd2; |
105 |
RigidBody* rb1; |
106 |
RigidBody* rb2; |
107 |
SimInfo::MoleculeIterator mi; |
108 |
Molecule::RigidBodyIterator rbIter; |
109 |
Molecule::IntegrableObjectIterator ioi; |
110 |
int ii, jj; |
111 |
std::string rbName; |
112 |
std::vector<Atom *> atoms1; |
113 |
std::vector<Atom *> atoms2; |
114 |
std::vector<Atom *>::iterator ai1; |
115 |
std::vector<Atom *>::iterator ai2; |
116 |
Vector3d O1pos, O2pos; |
117 |
Vector3d H1apos, H1bpos, H2apos, H2bpos; |
118 |
int nHB, nA, nD; |
119 |
|
120 |
DumpReader reader(info_, dumpFilename_); |
121 |
int nFrames = reader.getNFrames(); |
122 |
frameCounter_ = 0; |
123 |
|
124 |
for (int istep = 0; istep < nFrames; istep += step_) { |
125 |
reader.readFrame(istep); |
126 |
frameCounter_++; |
127 |
currentSnapshot_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
128 |
|
129 |
// update the positions of atoms which belong to the rigidbodies |
130 |
|
131 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
132 |
mol = info_->nextMolecule(mi)) { |
133 |
for (rb1 = mol->beginRigidBody(rbIter); rb1 != NULL; |
134 |
rb1 = mol->nextRigidBody(rbIter)) { |
135 |
rb1->updateAtoms(); |
136 |
} |
137 |
} |
138 |
|
139 |
if (evaluator1_.isDynamic()) { |
140 |
seleMan1_.setSelectionSet(evaluator1_.evaluate()); |
141 |
} |
142 |
if (evaluator2_.isDynamic()) { |
143 |
seleMan2_.setSelectionSet(evaluator2_.evaluate()); |
144 |
} |
145 |
|
146 |
for (sd1 = seleMan1_.beginSelected(ii); sd1 != NULL; sd1 = seleMan1_.nextSelected(ii)) { |
147 |
if (sd1->isRigidBody()) { |
148 |
rb1 = dynamic_cast<RigidBody*>(sd1); |
149 |
atoms1 = rb1->getAtoms(); |
150 |
|
151 |
int nH = 0; |
152 |
int nO = 0; |
153 |
|
154 |
for (ai1 = atoms1.begin(); ai1 != atoms1.end(); ++ai1) { |
155 |
std::string atName = (*ai1)->getType(); |
156 |
// query the force field for the AtomType associated with this |
157 |
// atomTypeName: |
158 |
AtomType* at = ff_->getAtomType(atName); |
159 |
// get the chain of base types for this atom type: |
160 |
std::vector<AtomType*> ayb = at->allYourBase(); |
161 |
// use the last type in the chain of base types for the name: |
162 |
std::string bn = ayb[ayb.size()-1]->getName(); |
163 |
|
164 |
bool isH = bn.compare("H") == 0 ? true : false; |
165 |
bool isO = bn.compare("O") == 0 ? true : false; |
166 |
|
167 |
if (isO && nO == 0) { |
168 |
O1pos = (*ai1)->getPos(); |
169 |
nO++; |
170 |
} |
171 |
if (isH) { |
172 |
if (nH == 0) { |
173 |
H1apos = (*ai1)->getPos(); |
174 |
} |
175 |
if (nH == 1) { |
176 |
H1bpos = (*ai1)->getPos(); |
177 |
} |
178 |
nH++; |
179 |
} |
180 |
} |
181 |
} |
182 |
|
183 |
|
184 |
nHB = 0; |
185 |
nA = 0; |
186 |
nD = 0; |
187 |
|
188 |
for (sd2 = seleMan2_.beginSelected(jj); sd2 != NULL; sd2 = seleMan2_.nextSelected(jj)) { |
189 |
|
190 |
if (sd1 == sd2) continue; |
191 |
|
192 |
if (sd2->isRigidBody()) { |
193 |
rb2 = dynamic_cast<RigidBody*>(sd2); |
194 |
atoms2 = rb2->getAtoms(); |
195 |
|
196 |
int nH = 0; |
197 |
int nO = 0; |
198 |
|
199 |
for (ai2 = atoms2.begin(); ai2 != atoms2.end(); ++ai2) { |
200 |
std::string atName = (*ai2)->getType(); |
201 |
// query the force field for the AtomType associated with this |
202 |
// atomTypeName: |
203 |
AtomType* at = ff_->getAtomType(atName); |
204 |
// get the chain of base types for this atom type: |
205 |
std::vector<AtomType*> ayb = at->allYourBase(); |
206 |
// use the last type in the chain of base types for the name: |
207 |
std::string bn = ayb[ayb.size()-1]->getName(); |
208 |
|
209 |
bool isH = bn.compare("H") == 0 ? true : false; |
210 |
bool isO = bn.compare("O") == 0 ? true : false; |
211 |
|
212 |
if (isO && nO == 0) { |
213 |
O2pos = (*ai2)->getPos(); |
214 |
nO++; |
215 |
} |
216 |
if (isH) { |
217 |
if (nH == 0) { |
218 |
H2apos = (*ai2)->getPos(); |
219 |
} |
220 |
if (nH == 1) { |
221 |
H2bpos = (*ai2)->getPos(); |
222 |
} |
223 |
nH++; |
224 |
} |
225 |
} |
226 |
|
227 |
// Do our testing: |
228 |
Vector3d Odiff = O2pos - O1pos; |
229 |
currentSnapshot_->wrapVector(Odiff); |
230 |
RealType Odist = Odiff.length(); |
231 |
if (Odist < rCut_) { |
232 |
// OH vectors: |
233 |
Vector3d HO1a = H1apos - O1pos; |
234 |
Vector3d HO1b = H1bpos - O1pos; |
235 |
Vector3d HO2a = H2apos - O2pos; |
236 |
Vector3d HO2b = H2bpos - O2pos; |
237 |
// wrapped in case a molecule is split across boundaries: |
238 |
currentSnapshot_->wrapVector(HO1a); |
239 |
currentSnapshot_->wrapVector(HO1b); |
240 |
currentSnapshot_->wrapVector(HO2a); |
241 |
currentSnapshot_->wrapVector(HO2a); |
242 |
// cos thetas: |
243 |
RealType ctheta1a = dot(HO1a, Odiff) / (Odist * HO1a.length()); |
244 |
RealType ctheta1b = dot(HO1b, Odiff) / (Odist * HO1b.length()); |
245 |
RealType ctheta2a = dot(HO2a, -Odiff) / (Odist * HO2a.length()); |
246 |
RealType ctheta2b = dot(HO2b, -Odiff) / (Odist * HO2b.length()); |
247 |
|
248 |
RealType theta1a = acos(ctheta1a) * 180.0 / M_PI; |
249 |
RealType theta1b = acos(ctheta1b) * 180.0 / M_PI; |
250 |
RealType theta2a = acos(ctheta2a) * 180.0 / M_PI; |
251 |
RealType theta2b = acos(ctheta2b) * 180.0 / M_PI; |
252 |
|
253 |
if (theta1a < thetaCut_) { |
254 |
// molecule 1 is a Hbond donor: |
255 |
nHB++; |
256 |
nD++; |
257 |
} |
258 |
if (theta1b < thetaCut_) { |
259 |
// molecule 1 is a Hbond donor: |
260 |
nHB++; |
261 |
nD++; |
262 |
} |
263 |
if (theta2a < thetaCut_) { |
264 |
// molecule 1 is a Hbond acceptor: |
265 |
nHB++; |
266 |
nA++; |
267 |
} |
268 |
if (theta2b < thetaCut_) { |
269 |
// molecule 1 is a Hbond acceptor: |
270 |
nHB++; |
271 |
nA++; |
272 |
} |
273 |
} |
274 |
} |
275 |
} |
276 |
collectHistogram(nHB, nA, nD); |
277 |
} |
278 |
} |
279 |
writeHistogram(); |
280 |
} |
281 |
|
282 |
|
283 |
void HBondGeometric::collectHistogram(int nHB, int nA, int nD) { |
284 |
nHBonds_[nHB] += 1; |
285 |
nAcceptor_[nA] += 1; |
286 |
nDonor_[nD] += 1; |
287 |
nSelected_++; |
288 |
} |
289 |
|
290 |
|
291 |
void HBondGeometric::writeHistogram() { |
292 |
|
293 |
std::ofstream osq(getOutputFileName().c_str()); |
294 |
cerr << "nSelected = " << nSelected_ << "\n"; |
295 |
|
296 |
if (osq.is_open()) { |
297 |
|
298 |
osq << "# HydrogenBonding Statistics\n"; |
299 |
osq << "# selection1: (" << selectionScript1_ << ")" |
300 |
<< "\tselection2: (" << selectionScript2_ << ")\n"; |
301 |
osq << "# p(nHBonds)\tp(nAcceptor)\tp(nDonor)\n"; |
302 |
// Normalize by number of frames and write it out: |
303 |
for (int i = 0; i < nBins_; ++i) { |
304 |
osq << i; |
305 |
osq << "\t" << (RealType) (nHBonds_[i]) / nSelected_; |
306 |
osq << "\t" << (RealType) (nAcceptor_[i]) / nSelected_; |
307 |
osq << "\t" << (RealType) (nDonor_[i]) / nSelected_; |
308 |
osq << "\n"; |
309 |
} |
310 |
osq.close(); |
311 |
|
312 |
} else { |
313 |
sprintf(painCave.errMsg, "HBondGeometric: unable to open %s\n", |
314 |
(getOutputFileName() + "q").c_str()); |
315 |
painCave.isFatal = 1; |
316 |
simError(); |
317 |
} |
318 |
} |
319 |
} |
320 |
|
321 |
|
322 |
|
323 |
|