ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/applications/staticProps/HBondGeometric.cpp
Revision: 2049
Committed: Tue Jan 6 21:44:10 2015 UTC (10 years, 3 months ago) by gezelter
File size: 11188 byte(s)
Log Message:
Added Geometric HBond StaticProps module.

File Contents

# User Rev Content
1 gezelter 2049 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Redistributions of source code must retain the above copyright
10     * notice, this list of conditions and the following disclaimer.
11     *
12     * 2. Redistributions in binary form must reproduce the above copyright
13     * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31     *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39     * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40     * [4] , Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41     */
42    
43     #include "applications/staticProps/HBondGeometric.hpp"
44     #include "utils/simError.h"
45     #include "io/DumpReader.hpp"
46     #include "primitives/Molecule.hpp"
47     #include "utils/NumericConstant.hpp"
48    
49     #include <vector>
50    
51     namespace OpenMD {
52    
53     HBondGeometric::HBondGeometric(SimInfo* info,
54     const std::string& filename,
55     const std::string& sele1,
56     const std::string& sele2,
57     double rCut, double thetaCut, int nbins) :
58     StaticAnalyser(info, filename),
59     selectionScript1_(sele1), evaluator1_(info), seleMan1_(info),
60     selectionScript2_(sele2), evaluator2_(info), seleMan2_(info){
61    
62     setOutputName(getPrefix(filename) + ".hbg");
63    
64     ff_ = info_->getForceField();
65    
66     evaluator1_.loadScriptString(sele1);
67     if (!evaluator1_.isDynamic()) {
68     seleMan1_.setSelectionSet(evaluator1_.evaluate());
69     }
70     evaluator2_.loadScriptString(sele2);
71     if (!evaluator2_.isDynamic()) {
72     seleMan2_.setSelectionSet(evaluator2_.evaluate());
73     }
74    
75     // Set up cutoff values:
76    
77     rCut_ = rCut;
78     thetaCut_ = thetaCut;
79     nBins_ = nbins;
80    
81     nHBonds_.resize(nBins_);
82     nDonor_.resize(nBins_);
83     nAcceptor_.resize(nBins_);
84     }
85    
86     HBondGeometric::~HBondGeometric() {
87     nHBonds_.clear();
88     nDonor_.clear();
89     nAcceptor_.clear();
90     }
91    
92     void HBondGeometric::initializeHistogram() {
93     std::fill(nHBonds_.begin(), nHBonds_.end(), 0);
94     std::fill(nDonor_.begin(), nDonor_.end(), 0);
95     std::fill(nAcceptor_.begin(), nAcceptor_.end(), 0);
96     nSelected_ = 0;
97     }
98    
99    
100    
101     void HBondGeometric::process() {
102     Molecule* mol;
103     StuntDouble* sd1;
104     StuntDouble* sd2;
105     RigidBody* rb1;
106     RigidBody* rb2;
107     SimInfo::MoleculeIterator mi;
108     Molecule::RigidBodyIterator rbIter;
109     Molecule::IntegrableObjectIterator ioi;
110     int ii, jj;
111     std::string rbName;
112     std::vector<Atom *> atoms1;
113     std::vector<Atom *> atoms2;
114     std::vector<Atom *>::iterator ai1;
115     std::vector<Atom *>::iterator ai2;
116     Vector3d O1pos, O2pos;
117     Vector3d H1apos, H1bpos, H2apos, H2bpos;
118     int nHB, nA, nD;
119    
120     DumpReader reader(info_, dumpFilename_);
121     int nFrames = reader.getNFrames();
122     frameCounter_ = 0;
123    
124     for (int istep = 0; istep < nFrames; istep += step_) {
125     reader.readFrame(istep);
126     frameCounter_++;
127     currentSnapshot_ = info_->getSnapshotManager()->getCurrentSnapshot();
128    
129     // update the positions of atoms which belong to the rigidbodies
130    
131     for (mol = info_->beginMolecule(mi); mol != NULL;
132     mol = info_->nextMolecule(mi)) {
133     for (rb1 = mol->beginRigidBody(rbIter); rb1 != NULL;
134     rb1 = mol->nextRigidBody(rbIter)) {
135     rb1->updateAtoms();
136     }
137     }
138    
139     if (evaluator1_.isDynamic()) {
140     seleMan1_.setSelectionSet(evaluator1_.evaluate());
141     }
142     if (evaluator2_.isDynamic()) {
143     seleMan2_.setSelectionSet(evaluator2_.evaluate());
144     }
145    
146     for (sd1 = seleMan1_.beginSelected(ii); sd1 != NULL; sd1 = seleMan1_.nextSelected(ii)) {
147     if (sd1->isRigidBody()) {
148     rb1 = dynamic_cast<RigidBody*>(sd1);
149     atoms1 = rb1->getAtoms();
150    
151     int nH = 0;
152     int nO = 0;
153    
154     for (ai1 = atoms1.begin(); ai1 != atoms1.end(); ++ai1) {
155     std::string atName = (*ai1)->getType();
156     // query the force field for the AtomType associated with this
157     // atomTypeName:
158     AtomType* at = ff_->getAtomType(atName);
159     // get the chain of base types for this atom type:
160     std::vector<AtomType*> ayb = at->allYourBase();
161     // use the last type in the chain of base types for the name:
162     std::string bn = ayb[ayb.size()-1]->getName();
163    
164     bool isH = bn.compare("H") == 0 ? true : false;
165     bool isO = bn.compare("O") == 0 ? true : false;
166    
167     if (isO && nO == 0) {
168     O1pos = (*ai1)->getPos();
169     nO++;
170     }
171     if (isH) {
172     if (nH == 0) {
173     H1apos = (*ai1)->getPos();
174     }
175     if (nH == 1) {
176     H1bpos = (*ai1)->getPos();
177     }
178     nH++;
179     }
180     }
181     }
182    
183    
184     nHB = 0;
185     nA = 0;
186     nD = 0;
187    
188     for (sd2 = seleMan2_.beginSelected(jj); sd2 != NULL; sd2 = seleMan2_.nextSelected(jj)) {
189    
190     if (sd1 == sd2) continue;
191    
192     if (sd2->isRigidBody()) {
193     rb2 = dynamic_cast<RigidBody*>(sd2);
194     atoms2 = rb2->getAtoms();
195    
196     int nH = 0;
197     int nO = 0;
198    
199     for (ai2 = atoms2.begin(); ai2 != atoms2.end(); ++ai2) {
200     std::string atName = (*ai2)->getType();
201     // query the force field for the AtomType associated with this
202     // atomTypeName:
203     AtomType* at = ff_->getAtomType(atName);
204     // get the chain of base types for this atom type:
205     std::vector<AtomType*> ayb = at->allYourBase();
206     // use the last type in the chain of base types for the name:
207     std::string bn = ayb[ayb.size()-1]->getName();
208    
209     bool isH = bn.compare("H") == 0 ? true : false;
210     bool isO = bn.compare("O") == 0 ? true : false;
211    
212     if (isO && nO == 0) {
213     O2pos = (*ai2)->getPos();
214     nO++;
215     }
216     if (isH) {
217     if (nH == 0) {
218     H2apos = (*ai2)->getPos();
219     }
220     if (nH == 1) {
221     H2bpos = (*ai2)->getPos();
222     }
223     nH++;
224     }
225     }
226    
227     // Do our testing:
228     Vector3d Odiff = O2pos - O1pos;
229     currentSnapshot_->wrapVector(Odiff);
230     RealType Odist = Odiff.length();
231     if (Odist < rCut_) {
232     // OH vectors:
233     Vector3d HO1a = H1apos - O1pos;
234     Vector3d HO1b = H1bpos - O1pos;
235     Vector3d HO2a = H2apos - O2pos;
236     Vector3d HO2b = H2bpos - O2pos;
237     // wrapped in case a molecule is split across boundaries:
238     currentSnapshot_->wrapVector(HO1a);
239     currentSnapshot_->wrapVector(HO1b);
240     currentSnapshot_->wrapVector(HO2a);
241     currentSnapshot_->wrapVector(HO2a);
242     // cos thetas:
243     RealType ctheta1a = dot(HO1a, Odiff) / (Odist * HO1a.length());
244     RealType ctheta1b = dot(HO1b, Odiff) / (Odist * HO1b.length());
245     RealType ctheta2a = dot(HO2a, -Odiff) / (Odist * HO2a.length());
246     RealType ctheta2b = dot(HO2b, -Odiff) / (Odist * HO2b.length());
247    
248     RealType theta1a = acos(ctheta1a) * 180.0 / M_PI;
249     RealType theta1b = acos(ctheta1b) * 180.0 / M_PI;
250     RealType theta2a = acos(ctheta2a) * 180.0 / M_PI;
251     RealType theta2b = acos(ctheta2b) * 180.0 / M_PI;
252    
253     if (theta1a < thetaCut_) {
254     // molecule 1 is a Hbond donor:
255     nHB++;
256     nD++;
257     }
258     if (theta1b < thetaCut_) {
259     // molecule 1 is a Hbond donor:
260     nHB++;
261     nD++;
262     }
263     if (theta2a < thetaCut_) {
264     // molecule 1 is a Hbond acceptor:
265     nHB++;
266     nA++;
267     }
268     if (theta2b < thetaCut_) {
269     // molecule 1 is a Hbond acceptor:
270     nHB++;
271     nA++;
272     }
273     }
274     }
275     }
276     collectHistogram(nHB, nA, nD);
277     }
278     }
279     writeHistogram();
280     }
281    
282    
283     void HBondGeometric::collectHistogram(int nHB, int nA, int nD) {
284     nHBonds_[nHB] += 1;
285     nAcceptor_[nA] += 1;
286     nDonor_[nD] += 1;
287     nSelected_++;
288     }
289    
290    
291     void HBondGeometric::writeHistogram() {
292    
293     std::ofstream osq(getOutputFileName().c_str());
294     cerr << "nSelected = " << nSelected_ << "\n";
295    
296     if (osq.is_open()) {
297    
298     osq << "# HydrogenBonding Statistics\n";
299     osq << "# selection1: (" << selectionScript1_ << ")"
300     << "\tselection2: (" << selectionScript2_ << ")\n";
301     osq << "# p(nHBonds)\tp(nAcceptor)\tp(nDonor)\n";
302     // Normalize by number of frames and write it out:
303     for (int i = 0; i < nBins_; ++i) {
304     osq << i;
305     osq << "\t" << (RealType) (nHBonds_[i]) / nSelected_;
306     osq << "\t" << (RealType) (nAcceptor_[i]) / nSelected_;
307     osq << "\t" << (RealType) (nDonor_[i]) / nSelected_;
308     osq << "\n";
309     }
310     osq.close();
311    
312     } else {
313     sprintf(painCave.errMsg, "HBondGeometric: unable to open %s\n",
314     (getOutputFileName() + "q").c_str());
315     painCave.isFatal = 1;
316     simError();
317     }
318     }
319     }
320    
321    
322    
323    

Properties

Name Value
svn:eol-style native
svn:executable *