35 |
|
* |
36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
< |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
< |
* [4] Vardeman & Gezelter, in progress (2009). |
38 |
> |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
> |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
> |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
#include <algorithm> |
45 |
|
#include "applications/staticProps/GofXyz.hpp" |
46 |
|
#include "utils/simError.h" |
47 |
|
#include "primitives/Molecule.hpp" |
48 |
+ |
#include "types/MultipoleAdapter.hpp" |
49 |
+ |
|
50 |
|
namespace OpenMD { |
51 |
|
|
52 |
|
GofXyz::GofXyz(SimInfo* info, const std::string& filename, const std::string& sele1, const std::string& sele2, const std::string& sele3, RealType len, int nrbins) |
81 |
|
} |
82 |
|
|
83 |
|
|
84 |
< |
void GofXyz::initalizeHistogram() { |
84 |
> |
void GofXyz::initializeHistogram() { |
85 |
|
//calculate the center of mass of the molecule of selected stuntdouble in selection1 |
86 |
|
|
87 |
|
if (!evaluator3_.isDynamic()) { |
106 |
|
sd1 != NULL || sd3 != NULL; |
107 |
|
sd1 = seleMan1_.nextSelected(i), sd3 = seleMan3_.nextSelected(j)) { |
108 |
|
|
109 |
< |
Vector3d r3 =sd3->getPos(); |
109 |
> |
Vector3d r3 = sd3->getPos(); |
110 |
|
Vector3d r1 = sd1->getPos(); |
111 |
|
Vector3d v1 = r3 - r1; |
112 |
|
if (usePeriodicBoundaryConditions_) |
113 |
|
info_->getSnapshotManager()->getCurrentSnapshot()->wrapVector(v1); |
114 |
< |
Vector3d zaxis = sd1->getElectroFrame().getColumn(2); |
114 |
> |
|
115 |
> |
AtomType* atype1 = static_cast<Atom*>(sd1)->getAtomType(); |
116 |
> |
MultipoleAdapter ma1 = MultipoleAdapter(atype1); |
117 |
> |
|
118 |
> |
Vector3d zaxis; |
119 |
> |
if (ma1.isDipole()) |
120 |
> |
zaxis = sd1->getDipole(); |
121 |
> |
else |
122 |
> |
zaxis = sd1->getA().transpose() * V3Z; |
123 |
> |
|
124 |
|
Vector3d xaxis = cross(v1, zaxis); |
125 |
|
Vector3d yaxis = cross(zaxis, xaxis); |
126 |
|
|
151 |
|
|
152 |
|
Vector3d newR12 = i->second * r12; |
153 |
|
// x, y and z's possible values range -halfLen_ to halfLen_ |
154 |
< |
int xbin = (newR12.x()+ halfLen_) / deltaR_; |
155 |
< |
int ybin = (newR12.y() + halfLen_) / deltaR_; |
156 |
< |
int zbin = (newR12.z() + halfLen_) / deltaR_; |
154 |
> |
int xbin = int( (newR12.x() + halfLen_) / deltaR_); |
155 |
> |
int ybin = int( (newR12.y() + halfLen_) / deltaR_); |
156 |
> |
int zbin = int( (newR12.z() + halfLen_) / deltaR_); |
157 |
|
|
158 |
|
if (xbin < nRBins_ && xbin >=0 && |
159 |
|
ybin < nRBins_ && ybin >= 0 && |
170 |
|
//rdfStream << "#selection1: (" << selectionScript1_ << ")\t"; |
171 |
|
//rdfStream << "selection2: (" << selectionScript2_ << ")\n"; |
172 |
|
//rdfStream << "#nRBins = " << nRBins_ << "\t maxLen = " << len_ << "deltaR = " << deltaR_ <<"\n"; |
173 |
< |
for (int i = 0; i < histogram_.size(); ++i) { |
174 |
< |
|
175 |
< |
for(int j = 0; j < histogram_[i].size(); ++j) { |
176 |
< |
|
177 |
< |
for(int k = 0;k < histogram_[i][j].size(); ++k) { |
166 |
< |
rdfStream.write(reinterpret_cast<char *>(&histogram_[i][j][k] ), sizeof(histogram_[i][j][k] )); |
173 |
> |
for (unsigned int i = 0; i < histogram_.size(); ++i) { |
174 |
> |
for(unsigned int j = 0; j < histogram_[i].size(); ++j) { |
175 |
> |
for(unsigned int k = 0;k < histogram_[i][j].size(); ++k) { |
176 |
> |
rdfStream.write(reinterpret_cast<char *>(&histogram_[i][j][k] ), |
177 |
> |
sizeof(histogram_[i][j][k] )); |
178 |
|
} |
179 |
|
} |
180 |
|
} |