1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#include <algorithm> |
44 |
#include <fstream> |
45 |
#include "applications/staticProps/GofRAngle.hpp" |
46 |
#include "primitives/Atom.hpp" |
47 |
#include "types/MultipoleAdapter.hpp" |
48 |
#include "utils/simError.h" |
49 |
|
50 |
namespace OpenMD { |
51 |
|
52 |
GofRAngle::GofRAngle(SimInfo* info, const std::string& filename, |
53 |
const std::string& sele1, |
54 |
const std::string& sele2, |
55 |
RealType len, int nrbins, int nangleBins) |
56 |
: RadialDistrFunc(info, filename, sele1, sele2), nAngleBins_(nangleBins), |
57 |
len_(len), nRBins_(nrbins), |
58 |
doSele3_(false), seleMan3_(info), evaluator3_(info) { |
59 |
|
60 |
deltaR_ = len_ /(double) nRBins_; |
61 |
deltaCosAngle_ = 2.0 / (double)nAngleBins_; |
62 |
histogram_.resize(nRBins_); |
63 |
avgGofr_.resize(nRBins_); |
64 |
for (int i = 0 ; i < nRBins_; ++i) { |
65 |
histogram_[i].resize(nAngleBins_); |
66 |
avgGofr_[i].resize(nAngleBins_); |
67 |
} |
68 |
} |
69 |
|
70 |
GofRAngle::GofRAngle(SimInfo* info, const std::string& filename, |
71 |
const std::string& sele1, |
72 |
const std::string& sele2, |
73 |
const std::string& sele3, |
74 |
RealType len, int nrbins, int nangleBins) |
75 |
: RadialDistrFunc(info, filename, sele1, sele2), nAngleBins_(nangleBins), |
76 |
len_(len), nRBins_(nrbins), doSele3_(true), selectionScript3_(sele3), |
77 |
seleMan3_(info), evaluator3_(info) { |
78 |
|
79 |
deltaR_ = len_ /(double) nRBins_; |
80 |
deltaCosAngle_ = 2.0 / (double)nAngleBins_; |
81 |
histogram_.resize(nRBins_); |
82 |
avgGofr_.resize(nRBins_); |
83 |
for (int i = 0 ; i < nRBins_; ++i) { |
84 |
histogram_[i].resize(nAngleBins_); |
85 |
avgGofr_[i].resize(nAngleBins_); |
86 |
} |
87 |
|
88 |
evaluator3_.loadScriptString(sele3); |
89 |
if (!evaluator3_.isDynamic()) { |
90 |
seleMan3_.setSelectionSet(evaluator3_.evaluate()); |
91 |
} |
92 |
|
93 |
} |
94 |
|
95 |
void GofRAngle::processNonOverlapping( SelectionManager& sman1, |
96 |
SelectionManager& sman2) { |
97 |
StuntDouble* sd1; |
98 |
StuntDouble* sd2; |
99 |
StuntDouble* sd3; |
100 |
int i; |
101 |
int j; |
102 |
int k; |
103 |
|
104 |
// This is the same as a non-overlapping pairwise loop structure: |
105 |
// for (int i = 0; i < ni ; ++i ) { |
106 |
// for (int j = 0; j < nj; ++j) {} |
107 |
// } |
108 |
|
109 |
if (doSele3_) { |
110 |
if (evaluator3_.isDynamic()) { |
111 |
seleMan3_.setSelectionSet(evaluator3_.evaluate()); |
112 |
} |
113 |
if (sman1.getSelectionCount() != seleMan3_.getSelectionCount() ) { |
114 |
RadialDistrFunc::processNonOverlapping( sman1, sman2 ); |
115 |
} |
116 |
|
117 |
for (sd1 = sman1.beginSelected(i), sd3 = seleMan3_.beginSelected(k); |
118 |
sd1 != NULL && sd3 != NULL; |
119 |
sd1 = sman1.nextSelected(i), sd3 = seleMan3_.nextSelected(k)) { |
120 |
for (sd2 = sman2.beginSelected(j); sd2 != NULL; |
121 |
sd2 = sman2.nextSelected(j)) { |
122 |
collectHistogram(sd1, sd2, sd3); |
123 |
} |
124 |
} |
125 |
} else { |
126 |
RadialDistrFunc::processNonOverlapping( sman1, sman2 ); |
127 |
} |
128 |
} |
129 |
|
130 |
void GofRAngle::processOverlapping( SelectionManager& sman) { |
131 |
StuntDouble* sd1; |
132 |
StuntDouble* sd2; |
133 |
StuntDouble* sd3; |
134 |
int i; |
135 |
int j; |
136 |
int k; |
137 |
|
138 |
// This is the same as a pairwise loop structure: |
139 |
// for (int i = 0; i < n-1 ; ++i ) { |
140 |
// for (int j = i + 1; j < n; ++j) {} |
141 |
// } |
142 |
|
143 |
if (doSele3_) { |
144 |
if (evaluator3_.isDynamic()) { |
145 |
seleMan3_.setSelectionSet(evaluator3_.evaluate()); |
146 |
} |
147 |
if (sman.getSelectionCount() != seleMan3_.getSelectionCount() ) { |
148 |
RadialDistrFunc::processOverlapping( sman); |
149 |
} |
150 |
for (sd1 = sman.beginSelected(i), sd3 = seleMan3_.beginSelected(k); |
151 |
sd1 != NULL && sd3 != NULL; |
152 |
sd1 = sman.nextSelected(i), sd3 = seleMan3_.nextSelected(k)) { |
153 |
for (j = i, sd2 = sman.nextSelected(j); sd2 != NULL; |
154 |
sd2 = sman.nextSelected(j)) { |
155 |
collectHistogram(sd1, sd2, sd3); |
156 |
} |
157 |
} |
158 |
} else { |
159 |
RadialDistrFunc::processOverlapping( sman); |
160 |
} |
161 |
} |
162 |
|
163 |
|
164 |
void GofRAngle::preProcess() { |
165 |
for (unsigned int i = 0; i < avgGofr_.size(); ++i) { |
166 |
std::fill(avgGofr_[i].begin(), avgGofr_[i].end(), 0); |
167 |
} |
168 |
} |
169 |
|
170 |
void GofRAngle::initializeHistogram() { |
171 |
npairs_ = 0; |
172 |
for (unsigned int i = 0; i < histogram_.size(); ++i){ |
173 |
std::fill(histogram_[i].begin(), histogram_[i].end(), 0); |
174 |
} |
175 |
} |
176 |
|
177 |
void GofRAngle::processHistogram() { |
178 |
int nPairs = getNPairs(); |
179 |
RealType volume = info_->getSnapshotManager()->getCurrentSnapshot()->getVolume(); |
180 |
RealType pairDensity = nPairs /volume; |
181 |
RealType pairConstant = ( 4.0 * NumericConstant::PI * pairDensity ) / 3.0; |
182 |
|
183 |
for(unsigned int i = 0 ; i < histogram_.size(); ++i){ |
184 |
|
185 |
RealType rLower = i * deltaR_; |
186 |
RealType rUpper = rLower + deltaR_; |
187 |
RealType volSlice = ( rUpper * rUpper * rUpper ) - |
188 |
( rLower * rLower * rLower ); |
189 |
RealType nIdeal = volSlice * pairConstant; |
190 |
|
191 |
for (unsigned int j = 0; j < histogram_[i].size(); ++j){ |
192 |
avgGofr_[i][j] += histogram_[i][j] / nIdeal; |
193 |
} |
194 |
} |
195 |
|
196 |
} |
197 |
|
198 |
void GofRAngle::collectHistogram(StuntDouble* sd1, StuntDouble* sd2) { |
199 |
|
200 |
if (sd1 == sd2) { |
201 |
return; |
202 |
} |
203 |
Vector3d pos1 = sd1->getPos(); |
204 |
Vector3d pos2 = sd2->getPos(); |
205 |
Vector3d r12 = pos2 - pos1; |
206 |
if (usePeriodicBoundaryConditions_) |
207 |
currentSnapshot_->wrapVector(r12); |
208 |
|
209 |
RealType distance = r12.length(); |
210 |
int whichRBin = int(distance / deltaR_); |
211 |
|
212 |
if (distance <= len_) { |
213 |
|
214 |
RealType cosAngle = evaluateAngle(sd1, sd2); |
215 |
RealType halfBin = (nAngleBins_ - 1) * 0.5; |
216 |
int whichThetaBin = int(halfBin * (cosAngle + 1.0)); |
217 |
++histogram_[whichRBin][whichThetaBin]; |
218 |
|
219 |
++npairs_; |
220 |
} |
221 |
} |
222 |
|
223 |
void GofRAngle::collectHistogram(StuntDouble* sd1, StuntDouble* sd2, |
224 |
StuntDouble* sd3) { |
225 |
|
226 |
if (sd1 == sd2) { |
227 |
return; |
228 |
} |
229 |
|
230 |
Vector3d p1 = sd1->getPos(); |
231 |
Vector3d p3 = sd3->getPos(); |
232 |
|
233 |
Vector3d c = 0.5 * (p1 + p3); |
234 |
Vector3d r13 = p3 - p1; |
235 |
|
236 |
Vector3d r12 = sd2->getPos() - c; |
237 |
|
238 |
if (usePeriodicBoundaryConditions_) { |
239 |
currentSnapshot_->wrapVector(r12); |
240 |
currentSnapshot_->wrapVector(r13); |
241 |
} |
242 |
|
243 |
RealType distance = r12.length(); |
244 |
int whichRBin = int(distance / deltaR_); |
245 |
|
246 |
if (distance <= len_) { |
247 |
|
248 |
RealType cosAngle = evaluateAngle(sd1, sd2, sd3); |
249 |
RealType halfBin = (nAngleBins_ - 1) * 0.5; |
250 |
int whichThetaBin = int(halfBin * (cosAngle + 1.0)); |
251 |
++histogram_[whichRBin][whichThetaBin]; |
252 |
|
253 |
++npairs_; |
254 |
} |
255 |
} |
256 |
|
257 |
void GofRAngle::writeRdf() { |
258 |
std::ofstream rdfStream(outputFilename_.c_str()); |
259 |
if (rdfStream.is_open()) { |
260 |
rdfStream << "#radial distribution function\n"; |
261 |
rdfStream << "#selection1: (" << selectionScript1_ << ")\t"; |
262 |
rdfStream << "selection2: (" << selectionScript2_ << ")"; |
263 |
if (doSele3_) { |
264 |
rdfStream << "\tselection3: (" << selectionScript3_ << ")\n"; |
265 |
} else { |
266 |
rdfStream << "\n"; |
267 |
} |
268 |
rdfStream << "#nRBins = " << nRBins_ << "\tmaxLen = " |
269 |
<< len_ << "\tdeltaR = " << deltaR_ <<"\n"; |
270 |
rdfStream << "#nAngleBins =" << nAngleBins_ << "\tdeltaCosAngle = " |
271 |
<< deltaCosAngle_ << "\n"; |
272 |
for (unsigned int i = 0; i < avgGofr_.size(); ++i) { |
273 |
// RealType r = deltaR_ * (i + 0.5); |
274 |
|
275 |
for(unsigned int j = 0; j < avgGofr_[i].size(); ++j) { |
276 |
// RealType cosAngle = -1.0 + (j + 0.5)*deltaCosAngle_; |
277 |
rdfStream << avgGofr_[i][j]/nProcessed_ << "\t"; |
278 |
} |
279 |
|
280 |
rdfStream << "\n"; |
281 |
} |
282 |
|
283 |
} else { |
284 |
sprintf(painCave.errMsg, "GofRAngle: unable to open %s\n", |
285 |
outputFilename_.c_str()); |
286 |
painCave.isFatal = 1; |
287 |
simError(); |
288 |
} |
289 |
|
290 |
rdfStream.close(); |
291 |
} |
292 |
|
293 |
RealType GofRTheta::evaluateAngle(StuntDouble* sd1, StuntDouble* sd2) { |
294 |
Vector3d pos1 = sd1->getPos(); |
295 |
Vector3d pos2 = sd2->getPos(); |
296 |
Vector3d r12 = pos2 - pos1; |
297 |
|
298 |
if (usePeriodicBoundaryConditions_) |
299 |
currentSnapshot_->wrapVector(r12); |
300 |
|
301 |
r12.normalize(); |
302 |
|
303 |
Vector3d vec; |
304 |
|
305 |
if (!sd1->isDirectional()) { |
306 |
sprintf(painCave.errMsg, |
307 |
"GofRTheta: attempted to use a non-directional object: %s\n", |
308 |
sd1->getType().c_str()); |
309 |
painCave.isFatal = 1; |
310 |
simError(); |
311 |
} |
312 |
|
313 |
if (sd1->isAtom()) { |
314 |
AtomType* atype1 = static_cast<Atom*>(sd1)->getAtomType(); |
315 |
MultipoleAdapter ma1 = MultipoleAdapter(atype1); |
316 |
|
317 |
if (ma1.isDipole() ) |
318 |
vec = sd1->getDipole(); |
319 |
else |
320 |
vec = sd1->getA().transpose() * V3Z; |
321 |
} else { |
322 |
vec = sd1->getA().transpose() * V3Z; |
323 |
} |
324 |
|
325 |
vec.normalize(); |
326 |
|
327 |
return dot(r12, vec); |
328 |
} |
329 |
|
330 |
RealType GofRTheta::evaluateAngle(StuntDouble* sd1, StuntDouble* sd2, |
331 |
StuntDouble* sd3) { |
332 |
Vector3d p1 = sd1->getPos(); |
333 |
Vector3d p3 = sd3->getPos(); |
334 |
|
335 |
Vector3d c = 0.5 * (p1 + p3); |
336 |
Vector3d r13 = p3 - p1; |
337 |
|
338 |
Vector3d r12 = sd2->getPos() - c; |
339 |
|
340 |
if (usePeriodicBoundaryConditions_) { |
341 |
currentSnapshot_->wrapVector(r12); |
342 |
currentSnapshot_->wrapVector(r13); |
343 |
} |
344 |
|
345 |
r12.normalize(); |
346 |
r13.normalize(); |
347 |
|
348 |
return dot(r12, r13); |
349 |
} |
350 |
|
351 |
RealType GofROmega::evaluateAngle(StuntDouble* sd1, StuntDouble* sd2) { |
352 |
Vector3d v1, v2; |
353 |
|
354 |
if (!sd1->isDirectional()) { |
355 |
sprintf(painCave.errMsg, |
356 |
"GofROmega: attempted to use a non-directional object: %s\n", |
357 |
sd1->getType().c_str()); |
358 |
painCave.isFatal = 1; |
359 |
simError(); |
360 |
} |
361 |
|
362 |
if (sd1->isAtom()){ |
363 |
AtomType* atype1 = static_cast<Atom*>(sd1)->getAtomType(); |
364 |
MultipoleAdapter ma1 = MultipoleAdapter(atype1); |
365 |
if (ma1.isDipole() ) |
366 |
v1 = sd1->getDipole(); |
367 |
else |
368 |
v1 = sd1->getA().transpose() * V3Z; |
369 |
} else { |
370 |
v1 = sd1->getA().transpose() * V3Z; |
371 |
} |
372 |
|
373 |
if (!sd2->isDirectional()) { |
374 |
sprintf(painCave.errMsg, |
375 |
"GofROmega attempted to use a non-directional object: %s\n", |
376 |
sd2->getType().c_str()); |
377 |
painCave.isFatal = 1; |
378 |
simError(); |
379 |
} |
380 |
|
381 |
if (sd2->isAtom()) { |
382 |
AtomType* atype2 = static_cast<Atom*>(sd2)->getAtomType(); |
383 |
MultipoleAdapter ma2 = MultipoleAdapter(atype2); |
384 |
|
385 |
if (ma2.isDipole() ) |
386 |
v2 = sd2->getDipole(); |
387 |
else |
388 |
v2 = sd2->getA().transpose() * V3Z; |
389 |
} else { |
390 |
v2 = sd2->getA().transpose() * V3Z; |
391 |
} |
392 |
|
393 |
v1.normalize(); |
394 |
v2.normalize(); |
395 |
return dot(v1, v2); |
396 |
} |
397 |
|
398 |
RealType GofROmega::evaluateAngle(StuntDouble* sd1, StuntDouble* sd2, |
399 |
StuntDouble* sd3) { |
400 |
|
401 |
Vector3d v1; |
402 |
Vector3d v2; |
403 |
|
404 |
v1 = sd3->getPos() - sd1->getPos(); |
405 |
if (usePeriodicBoundaryConditions_) |
406 |
currentSnapshot_->wrapVector(v1); |
407 |
|
408 |
if (!sd2->isDirectional()) { |
409 |
sprintf(painCave.errMsg, |
410 |
"GofROmega: attempted to use a non-directional object: %s\n", |
411 |
sd2->getType().c_str()); |
412 |
painCave.isFatal = 1; |
413 |
simError(); |
414 |
} |
415 |
|
416 |
if (sd2->isAtom()) { |
417 |
AtomType* atype2 = static_cast<Atom*>(sd2)->getAtomType(); |
418 |
MultipoleAdapter ma2 = MultipoleAdapter(atype2); |
419 |
|
420 |
if (ma2.isDipole() ) |
421 |
v2 = sd2->getDipole(); |
422 |
else |
423 |
v2 = sd2->getA().transpose() * V3Z; |
424 |
} else { |
425 |
v2 = sd2->getA().transpose() * V3Z; |
426 |
} |
427 |
|
428 |
v1.normalize(); |
429 |
v2.normalize(); |
430 |
return dot(v1, v2); |
431 |
} |
432 |
} |
433 |
|
434 |
|