6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
|
*/ |
41 |
|
|
42 |
|
#include <algorithm> |
44 |
|
#include "applications/staticProps/GofRAngle.hpp" |
45 |
|
#include "utils/simError.h" |
46 |
|
|
47 |
< |
namespace oopse { |
47 |
> |
namespace OpenMD { |
48 |
|
|
49 |
< |
GofRAngle::GofRAngle(SimInfo* info, const std::string& filename, const std::string& sele1, |
50 |
< |
const std::string& sele2, double len, int nrbins, int nangleBins) |
49 |
> |
GofRAngle::GofRAngle(SimInfo* info, const std::string& filename, const std::string& sele1, |
50 |
> |
const std::string& sele2, RealType len, int nrbins, int nangleBins) |
51 |
|
: RadialDistrFunc(info, filename, sele1, sele2), len_(len), nRBins_(nrbins), nAngleBins_(nangleBins){ |
52 |
|
|
53 |
< |
deltaR_ = len_ /nRBins_; |
54 |
< |
deltaCosAngle_ = 2.0 / nAngleBins_; |
55 |
< |
|
56 |
< |
histogram_.resize(nRBins_); |
57 |
< |
avgGofr_.resize(nRBins_); |
58 |
< |
for (int i = 0 ; i < nRBins_; ++i) { |
53 |
> |
deltaR_ = len_ /(double) nRBins_; |
54 |
> |
deltaCosAngle_ = 2.0 / (double)nAngleBins_; |
55 |
> |
histogram_.resize(nRBins_); |
56 |
> |
avgGofr_.resize(nRBins_); |
57 |
> |
for (int i = 0 ; i < nRBins_; ++i) { |
58 |
|
histogram_[i].resize(nAngleBins_); |
59 |
|
avgGofr_[i].resize(nAngleBins_); |
60 |
+ |
} |
61 |
|
} |
62 |
– |
} |
62 |
|
|
63 |
|
|
64 |
< |
void GofRAngle::preProcess() { |
66 |
< |
|
64 |
> |
void GofRAngle::preProcess() { |
65 |
|
for (int i = 0; i < avgGofr_.size(); ++i) { |
66 |
< |
std::fill(avgGofr_[i].begin(), avgGofr_[i].end(), 0); |
66 |
> |
std::fill(avgGofr_[i].begin(), avgGofr_[i].end(), 0); |
67 |
|
} |
68 |
< |
} |
68 |
> |
} |
69 |
|
|
70 |
< |
void GofRAngle::initalizeHistogram() { |
70 |
> |
void GofRAngle::initalizeHistogram() { |
71 |
|
npairs_ = 0; |
72 |
< |
for (int i = 0; i < histogram_.size(); ++i) |
73 |
< |
std::fill(histogram_[i].begin(), histogram_[i].end(), 0); |
74 |
< |
} |
72 |
> |
for (int i = 0; i < histogram_.size(); ++i){ |
73 |
> |
std::fill(histogram_[i].begin(), histogram_[i].end(), 0); |
74 |
> |
} |
75 |
> |
} |
76 |
|
|
77 |
< |
|
79 |
< |
void GofRAngle::processHistogram() { |
80 |
< |
|
77 |
> |
void GofRAngle::processHistogram() { |
78 |
|
int nPairs = getNPairs(); |
79 |
< |
double volume = info_->getSnapshotManager()->getCurrentSnapshot()->getVolume(); |
80 |
< |
double pairDensity = nPairs /volume; |
81 |
< |
double pairConstant = ( 4.0 * NumericConstant::PI * pairDensity ) / 3.0; |
79 |
> |
RealType volume = info_->getSnapshotManager()->getCurrentSnapshot()->getVolume(); |
80 |
> |
RealType pairDensity = nPairs /volume; |
81 |
> |
RealType pairConstant = ( 4.0 * NumericConstant::PI * pairDensity ) / 3.0; |
82 |
|
|
83 |
|
for(int i = 0 ; i < histogram_.size(); ++i){ |
84 |
|
|
85 |
< |
double rLower = i * deltaR_; |
86 |
< |
double rUpper = rLower + deltaR_; |
87 |
< |
double volSlice = ( rUpper * rUpper * rUpper ) - ( rLower * rLower * rLower ); |
88 |
< |
double nIdeal = volSlice * pairConstant; |
85 |
> |
RealType rLower = i * deltaR_; |
86 |
> |
RealType rUpper = rLower + deltaR_; |
87 |
> |
RealType volSlice = ( rUpper * rUpper * rUpper ) - ( rLower * rLower * rLower ); |
88 |
> |
RealType nIdeal = volSlice * pairConstant; |
89 |
|
|
90 |
< |
for (int j = 0; j < histogram_[i].size(); ++j){ |
91 |
< |
avgGofr_[i][j] += histogram_[i][j] / nIdeal; |
92 |
< |
} |
90 |
> |
for (int j = 0; j < histogram_[i].size(); ++j){ |
91 |
> |
avgGofr_[i][j] += histogram_[i][j] / nIdeal; |
92 |
> |
} |
93 |
|
} |
94 |
|
|
95 |
< |
} |
95 |
> |
} |
96 |
|
|
97 |
< |
void GofRAngle::collectHistogram(StuntDouble* sd1, StuntDouble* sd2) { |
97 |
> |
void GofRAngle::collectHistogram(StuntDouble* sd1, StuntDouble* sd2) { |
98 |
|
|
99 |
|
if (sd1 == sd2) { |
100 |
< |
return; |
100 |
> |
return; |
101 |
|
} |
105 |
– |
|
102 |
|
Vector3d pos1 = sd1->getPos(); |
103 |
|
Vector3d pos2 = sd2->getPos(); |
104 |
< |
Vector3d r12 = pos1 - pos2; |
105 |
< |
currentSnapshot_->wrapVector(r12); |
104 |
> |
Vector3d r12 = pos2 - pos1; |
105 |
> |
if (usePeriodicBoundaryConditions_) |
106 |
> |
currentSnapshot_->wrapVector(r12); |
107 |
|
|
108 |
< |
double distance = r12.length(); |
108 |
> |
RealType distance = r12.length(); |
109 |
|
int whichRBin = distance / deltaR_; |
110 |
|
|
111 |
|
if (distance <= len_) { |
112 |
< |
double cosAngle = evaluateAngle(sd1, sd2); |
113 |
< |
double halfBin = (nAngleBins_ - 1) * 0.5; |
114 |
< |
int whichThetaBin = halfBin * (cosAngle + 1.0); |
115 |
< |
++histogram_[whichRBin][whichThetaBin]; |
112 |
> |
|
113 |
> |
RealType cosAngle = evaluateAngle(sd1, sd2); |
114 |
> |
RealType halfBin = (nAngleBins_ - 1) * 0.5; |
115 |
> |
int whichThetaBin = halfBin * (cosAngle + 1.0); |
116 |
> |
++histogram_[whichRBin][whichThetaBin]; |
117 |
|
|
118 |
< |
++npairs_; |
118 |
> |
++npairs_; |
119 |
|
} |
120 |
< |
} |
120 |
> |
} |
121 |
|
|
122 |
< |
void GofRAngle::writeRdf() { |
122 |
> |
void GofRAngle::writeRdf() { |
123 |
|
std::ofstream rdfStream(outputFilename_.c_str()); |
124 |
|
if (rdfStream.is_open()) { |
125 |
< |
rdfStream << "#radial distribution function\n"; |
126 |
< |
rdfStream << "#selection1: (" << selectionScript1_ << ")\t"; |
127 |
< |
rdfStream << "selection2: (" << selectionScript2_ << ")\n"; |
128 |
< |
rdfStream << "#r\tcorrValue\n"; |
129 |
< |
for (int i = 0; i < avgGofr_.size(); ++i) { |
130 |
< |
double r = deltaR_ * (i + 0.5); |
125 |
> |
rdfStream << "#radial distribution function\n"; |
126 |
> |
rdfStream << "#selection1: (" << selectionScript1_ << ")\t"; |
127 |
> |
rdfStream << "selection2: (" << selectionScript2_ << ")\n"; |
128 |
> |
rdfStream << "#nRBins = " << nRBins_ << "\t maxLen = " << len_ << "deltaR = " << deltaR_ <<"\n"; |
129 |
> |
rdfStream << "#nAngleBins =" << nAngleBins_ << "deltaCosAngle = " << deltaCosAngle_ << "\n"; |
130 |
> |
for (int i = 0; i < avgGofr_.size(); ++i) { |
131 |
> |
RealType r = deltaR_ * (i + 0.5); |
132 |
|
|
133 |
< |
for(int j = 0; j < avgGofr_[i].size(); ++j) { |
134 |
< |
double cosAngle = -1.0 + (j + 0.5)*deltaCosAngle_; |
135 |
< |
rdfStream << r << "\t" << cosAngle << "\t" << avgGofr_[i][j]/nProcessed_ << "\n"; |
136 |
< |
} |
137 |
< |
} |
133 |
> |
for(int j = 0; j < avgGofr_[i].size(); ++j) { |
134 |
> |
RealType cosAngle = -1.0 + (j + 0.5)*deltaCosAngle_; |
135 |
> |
rdfStream << avgGofr_[i][j]/nProcessed_ << "\t"; |
136 |
> |
} |
137 |
> |
|
138 |
> |
rdfStream << "\n"; |
139 |
> |
} |
140 |
|
|
141 |
|
} else { |
142 |
< |
|
143 |
< |
|
142 |
> |
sprintf(painCave.errMsg, "GofRAngle: unable to open %s\n", outputFilename_.c_str()); |
143 |
> |
painCave.isFatal = 1; |
144 |
> |
simError(); |
145 |
|
} |
146 |
|
|
147 |
|
rdfStream.close(); |
148 |
< |
} |
148 |
> |
} |
149 |
|
|
150 |
< |
double GofRTheta::evaluateAngle(StuntDouble* sd1, StuntDouble* sd2) { |
150 |
> |
RealType GofRTheta::evaluateAngle(StuntDouble* sd1, StuntDouble* sd2) { |
151 |
|
Vector3d pos1 = sd1->getPos(); |
152 |
|
Vector3d pos2 = sd2->getPos(); |
153 |
< |
Vector3d r12 = pos1 - pos2; |
154 |
< |
currentSnapshot_->wrapVector(r12); |
153 |
> |
Vector3d r12 = pos2 - pos1; |
154 |
> |
|
155 |
> |
if (usePeriodicBoundaryConditions_) |
156 |
> |
currentSnapshot_->wrapVector(r12); |
157 |
> |
|
158 |
|
r12.normalize(); |
159 |
|
Vector3d dipole = sd1->getElectroFrame().getColumn(2); |
160 |
|
dipole.normalize(); |
161 |
|
return dot(r12, dipole); |
162 |
< |
} |
162 |
> |
} |
163 |
|
|
164 |
< |
double GofROmega::evaluateAngle(StuntDouble* sd1, StuntDouble* sd2) { |
164 |
> |
RealType GofROmega::evaluateAngle(StuntDouble* sd1, StuntDouble* sd2) { |
165 |
|
Vector3d v1 = sd1->getElectroFrame().getColumn(2); |
166 |
< |
Vector3d v2 = sd1->getElectroFrame().getColumn(2); |
166 |
> |
Vector3d v2 = sd2->getElectroFrame().getColumn(2); |
167 |
|
v1.normalize(); |
168 |
|
v2.normalize(); |
169 |
|
return dot(v1, v2); |
170 |
< |
} |
170 |
> |
} |
171 |
|
|
172 |
|
|
173 |
|
} |