6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
#include <algorithm> |
44 |
|
#include <fstream> |
45 |
|
#include "applications/staticProps/GofRAngle.hpp" |
46 |
+ |
#include "primitives/Atom.hpp" |
47 |
+ |
#include "types/MultipoleAdapter.hpp" |
48 |
|
#include "utils/simError.h" |
49 |
|
|
50 |
< |
namespace oopse { |
50 |
> |
namespace OpenMD { |
51 |
|
|
52 |
|
GofRAngle::GofRAngle(SimInfo* info, const std::string& filename, const std::string& sele1, |
53 |
|
const std::string& sele2, RealType len, int nrbins, int nangleBins) |
54 |
|
: RadialDistrFunc(info, filename, sele1, sele2), len_(len), nRBins_(nrbins), nAngleBins_(nangleBins){ |
55 |
|
|
56 |
< |
deltaR_ = len_ /nRBins_; |
57 |
< |
deltaCosAngle_ = 2.0 / nAngleBins_; |
55 |
< |
|
56 |
> |
deltaR_ = len_ /(double) nRBins_; |
57 |
> |
deltaCosAngle_ = 2.0 / (double)nAngleBins_; |
58 |
|
histogram_.resize(nRBins_); |
59 |
|
avgGofr_.resize(nRBins_); |
60 |
|
for (int i = 0 ; i < nRBins_; ++i) { |
65 |
|
|
66 |
|
|
67 |
|
void GofRAngle::preProcess() { |
68 |
< |
|
67 |
< |
for (int i = 0; i < avgGofr_.size(); ++i) { |
68 |
> |
for (unsigned int i = 0; i < avgGofr_.size(); ++i) { |
69 |
|
std::fill(avgGofr_[i].begin(), avgGofr_[i].end(), 0); |
70 |
|
} |
71 |
|
} |
72 |
|
|
73 |
< |
void GofRAngle::initalizeHistogram() { |
73 |
> |
void GofRAngle::initializeHistogram() { |
74 |
|
npairs_ = 0; |
75 |
< |
for (int i = 0; i < histogram_.size(); ++i) |
75 |
> |
for (unsigned int i = 0; i < histogram_.size(); ++i){ |
76 |
|
std::fill(histogram_[i].begin(), histogram_[i].end(), 0); |
77 |
+ |
} |
78 |
|
} |
79 |
|
|
78 |
– |
|
80 |
|
void GofRAngle::processHistogram() { |
80 |
– |
|
81 |
|
int nPairs = getNPairs(); |
82 |
|
RealType volume = info_->getSnapshotManager()->getCurrentSnapshot()->getVolume(); |
83 |
|
RealType pairDensity = nPairs /volume; |
84 |
|
RealType pairConstant = ( 4.0 * NumericConstant::PI * pairDensity ) / 3.0; |
85 |
|
|
86 |
< |
for(int i = 0 ; i < histogram_.size(); ++i){ |
86 |
> |
for(unsigned int i = 0 ; i < histogram_.size(); ++i){ |
87 |
|
|
88 |
|
RealType rLower = i * deltaR_; |
89 |
|
RealType rUpper = rLower + deltaR_; |
90 |
|
RealType volSlice = ( rUpper * rUpper * rUpper ) - ( rLower * rLower * rLower ); |
91 |
|
RealType nIdeal = volSlice * pairConstant; |
92 |
|
|
93 |
< |
for (int j = 0; j < histogram_[i].size(); ++j){ |
93 |
> |
for (unsigned int j = 0; j < histogram_[i].size(); ++j){ |
94 |
|
avgGofr_[i][j] += histogram_[i][j] / nIdeal; |
95 |
|
} |
96 |
|
} |
102 |
|
if (sd1 == sd2) { |
103 |
|
return; |
104 |
|
} |
105 |
– |
|
105 |
|
Vector3d pos1 = sd1->getPos(); |
106 |
|
Vector3d pos2 = sd2->getPos(); |
107 |
|
Vector3d r12 = pos2 - pos1; |
108 |
< |
currentSnapshot_->wrapVector(r12); |
108 |
> |
if (usePeriodicBoundaryConditions_) |
109 |
> |
currentSnapshot_->wrapVector(r12); |
110 |
|
|
111 |
|
RealType distance = r12.length(); |
112 |
< |
int whichRBin = distance / deltaR_; |
112 |
> |
int whichRBin = int(distance / deltaR_); |
113 |
|
|
114 |
|
if (distance <= len_) { |
115 |
+ |
|
116 |
|
RealType cosAngle = evaluateAngle(sd1, sd2); |
117 |
|
RealType halfBin = (nAngleBins_ - 1) * 0.5; |
118 |
< |
int whichThetaBin = halfBin * (cosAngle + 1.0); |
118 |
> |
int whichThetaBin = int(halfBin * (cosAngle + 1.0)); |
119 |
|
++histogram_[whichRBin][whichThetaBin]; |
120 |
|
|
121 |
|
++npairs_; |
130 |
|
rdfStream << "selection2: (" << selectionScript2_ << ")\n"; |
131 |
|
rdfStream << "#nRBins = " << nRBins_ << "\t maxLen = " << len_ << "deltaR = " << deltaR_ <<"\n"; |
132 |
|
rdfStream << "#nAngleBins =" << nAngleBins_ << "deltaCosAngle = " << deltaCosAngle_ << "\n"; |
133 |
< |
for (int i = 0; i < avgGofr_.size(); ++i) { |
134 |
< |
RealType r = deltaR_ * (i + 0.5); |
133 |
> |
for (unsigned int i = 0; i < avgGofr_.size(); ++i) { |
134 |
> |
// RealType r = deltaR_ * (i + 0.5); |
135 |
|
|
136 |
< |
for(int j = 0; j < avgGofr_[i].size(); ++j) { |
137 |
< |
RealType cosAngle = -1.0 + (j + 0.5)*deltaCosAngle_; |
136 |
> |
for(unsigned int j = 0; j < avgGofr_[i].size(); ++j) { |
137 |
> |
// RealType cosAngle = -1.0 + (j + 0.5)*deltaCosAngle_; |
138 |
|
rdfStream << avgGofr_[i][j]/nProcessed_ << "\t"; |
139 |
|
} |
140 |
|
|
154 |
|
Vector3d pos1 = sd1->getPos(); |
155 |
|
Vector3d pos2 = sd2->getPos(); |
156 |
|
Vector3d r12 = pos2 - pos1; |
157 |
< |
currentSnapshot_->wrapVector(r12); |
157 |
> |
|
158 |
> |
if (usePeriodicBoundaryConditions_) |
159 |
> |
currentSnapshot_->wrapVector(r12); |
160 |
> |
|
161 |
|
r12.normalize(); |
162 |
< |
Vector3d dipole = sd1->getElectroFrame().getColumn(2); |
163 |
< |
dipole.normalize(); |
164 |
< |
return dot(r12, dipole); |
162 |
> |
|
163 |
> |
Vector3d vec; |
164 |
> |
|
165 |
> |
if (sd1->isAtom()) { |
166 |
> |
AtomType* atype1 = static_cast<Atom*>(sd1)->getAtomType(); |
167 |
> |
MultipoleAdapter ma1 = MultipoleAdapter(atype1); |
168 |
> |
|
169 |
> |
if (ma1.isDipole() ) |
170 |
> |
vec = sd1->getDipole(); |
171 |
> |
else |
172 |
> |
vec = sd1->getA().transpose() * V3Z; |
173 |
> |
} else { |
174 |
> |
vec = sd1->getA().transpose() * V3Z; |
175 |
> |
} |
176 |
> |
|
177 |
> |
vec.normalize(); |
178 |
> |
|
179 |
> |
return dot(r12, vec); |
180 |
|
} |
181 |
|
|
182 |
|
RealType GofROmega::evaluateAngle(StuntDouble* sd1, StuntDouble* sd2) { |
183 |
< |
Vector3d v1 = sd1->getElectroFrame().getColumn(2); |
184 |
< |
Vector3d v2 = sd2->getElectroFrame().getColumn(2); |
183 |
> |
Vector3d v1, v2; |
184 |
> |
|
185 |
> |
if (sd1->isAtom()){ |
186 |
> |
AtomType* atype1 = static_cast<Atom*>(sd1)->getAtomType(); |
187 |
> |
MultipoleAdapter ma1 = MultipoleAdapter(atype1); |
188 |
> |
if (ma1.isDipole() ) |
189 |
> |
v1 = sd1->getDipole(); |
190 |
> |
else |
191 |
> |
v1 = sd1->getA().transpose() * V3Z; |
192 |
> |
} else { |
193 |
> |
v1 = sd1->getA().transpose() * V3Z; |
194 |
> |
} |
195 |
> |
|
196 |
> |
if (sd2->isAtom()) { |
197 |
> |
AtomType* atype2 = static_cast<Atom*>(sd2)->getAtomType(); |
198 |
> |
MultipoleAdapter ma2 = MultipoleAdapter(atype2); |
199 |
> |
|
200 |
> |
if (ma2.isDipole() ) |
201 |
> |
v2 = sd2->getDipole(); |
202 |
> |
else |
203 |
> |
v2 = sd2->getA().transpose() * V3Z; |
204 |
> |
} else { |
205 |
> |
v2 = sd2->getA().transpose() * V3Z; |
206 |
> |
} |
207 |
> |
|
208 |
|
v1.normalize(); |
209 |
|
v2.normalize(); |
210 |
|
return dot(v1, v2); |