35 |
|
* |
36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
< |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
38 |
> |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
|
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
|
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
43 |
|
#include <algorithm> |
44 |
|
#include <fstream> |
45 |
|
#include "applications/staticProps/GofRAngle.hpp" |
46 |
+ |
#include "primitives/Atom.hpp" |
47 |
+ |
#include "types/MultipoleAdapter.hpp" |
48 |
|
#include "utils/simError.h" |
49 |
|
|
50 |
|
namespace OpenMD { |
109 |
|
currentSnapshot_->wrapVector(r12); |
110 |
|
|
111 |
|
RealType distance = r12.length(); |
112 |
< |
int whichRBin = distance / deltaR_; |
112 |
> |
int whichRBin = int(distance / deltaR_); |
113 |
|
|
114 |
|
if (distance <= len_) { |
115 |
|
|
116 |
|
RealType cosAngle = evaluateAngle(sd1, sd2); |
117 |
|
RealType halfBin = (nAngleBins_ - 1) * 0.5; |
118 |
< |
int whichThetaBin = halfBin * (cosAngle + 1.0); |
118 |
> |
int whichThetaBin = int(halfBin * (cosAngle + 1.0)); |
119 |
|
++histogram_[whichRBin][whichThetaBin]; |
120 |
|
|
121 |
|
++npairs_; |
131 |
|
rdfStream << "#nRBins = " << nRBins_ << "\t maxLen = " << len_ << "deltaR = " << deltaR_ <<"\n"; |
132 |
|
rdfStream << "#nAngleBins =" << nAngleBins_ << "deltaCosAngle = " << deltaCosAngle_ << "\n"; |
133 |
|
for (unsigned int i = 0; i < avgGofr_.size(); ++i) { |
134 |
< |
RealType r = deltaR_ * (i + 0.5); |
134 |
> |
// RealType r = deltaR_ * (i + 0.5); |
135 |
|
|
136 |
|
for(unsigned int j = 0; j < avgGofr_[i].size(); ++j) { |
137 |
< |
RealType cosAngle = -1.0 + (j + 0.5)*deltaCosAngle_; |
137 |
> |
// RealType cosAngle = -1.0 + (j + 0.5)*deltaCosAngle_; |
138 |
|
rdfStream << avgGofr_[i][j]/nProcessed_ << "\t"; |
139 |
|
} |
140 |
|
|
159 |
|
currentSnapshot_->wrapVector(r12); |
160 |
|
|
161 |
|
r12.normalize(); |
162 |
< |
Vector3d dipole = sd1->getElectroFrame().getColumn(2); |
163 |
< |
dipole.normalize(); |
164 |
< |
return dot(r12, dipole); |
162 |
> |
|
163 |
> |
Vector3d vec; |
164 |
> |
|
165 |
> |
if (sd1->isAtom()) { |
166 |
> |
AtomType* atype1 = static_cast<Atom*>(sd1)->getAtomType(); |
167 |
> |
MultipoleAdapter ma1 = MultipoleAdapter(atype1); |
168 |
> |
|
169 |
> |
if (ma1.isDipole() ) |
170 |
> |
vec = sd1->getDipole(); |
171 |
> |
else |
172 |
> |
vec = sd1->getA().transpose() * V3Z; |
173 |
> |
} else { |
174 |
> |
vec = sd1->getA().transpose() * V3Z; |
175 |
> |
} |
176 |
> |
|
177 |
> |
vec.normalize(); |
178 |
> |
|
179 |
> |
return dot(r12, vec); |
180 |
|
} |
181 |
|
|
182 |
|
RealType GofROmega::evaluateAngle(StuntDouble* sd1, StuntDouble* sd2) { |
183 |
< |
Vector3d v1 = sd1->getElectroFrame().getColumn(2); |
184 |
< |
Vector3d v2 = sd2->getElectroFrame().getColumn(2); |
183 |
> |
Vector3d v1, v2; |
184 |
> |
|
185 |
> |
if (sd1->isAtom()){ |
186 |
> |
AtomType* atype1 = static_cast<Atom*>(sd1)->getAtomType(); |
187 |
> |
MultipoleAdapter ma1 = MultipoleAdapter(atype1); |
188 |
> |
if (ma1.isDipole() ) |
189 |
> |
v1 = sd1->getDipole(); |
190 |
> |
else |
191 |
> |
v1 = sd1->getA().transpose() * V3Z; |
192 |
> |
} else { |
193 |
> |
v1 = sd1->getA().transpose() * V3Z; |
194 |
> |
} |
195 |
> |
|
196 |
> |
if (sd2->isAtom()) { |
197 |
> |
AtomType* atype2 = static_cast<Atom*>(sd2)->getAtomType(); |
198 |
> |
MultipoleAdapter ma2 = MultipoleAdapter(atype2); |
199 |
> |
|
200 |
> |
if (ma2.isDipole() ) |
201 |
> |
v2 = sd2->getDipole(); |
202 |
> |
else |
203 |
> |
v2 = sd2->getA().transpose() * V3Z; |
204 |
> |
} else { |
205 |
> |
v2 = sd2->getA().transpose() * V3Z; |
206 |
> |
} |
207 |
> |
|
208 |
|
v1.normalize(); |
209 |
|
v2.normalize(); |
210 |
|
return dot(v1, v2); |