47 |
|
namespace oopse { |
48 |
|
|
49 |
|
GofRAngle::GofRAngle(SimInfo* info, const std::string& filename, const std::string& sele1, |
50 |
< |
const std::string& sele2, double len, int nrbins, int nangleBins) |
50 |
> |
const std::string& sele2, RealType len, int nrbins, int nangleBins) |
51 |
|
: RadialDistrFunc(info, filename, sele1, sele2), len_(len), nRBins_(nrbins), nAngleBins_(nangleBins){ |
52 |
|
|
53 |
< |
deltaR_ = len_ /nRBins_; |
54 |
< |
deltaCosAngle_ = 2.0 / nAngleBins_; |
55 |
< |
|
53 |
> |
deltaR_ = len_ /(double) nRBins_; |
54 |
> |
deltaCosAngle_ = 2.0 / (double)nAngleBins_; |
55 |
|
histogram_.resize(nRBins_); |
56 |
|
avgGofr_.resize(nRBins_); |
57 |
|
for (int i = 0 ; i < nRBins_; ++i) { |
62 |
|
|
63 |
|
|
64 |
|
void GofRAngle::preProcess() { |
66 |
– |
|
65 |
|
for (int i = 0; i < avgGofr_.size(); ++i) { |
66 |
|
std::fill(avgGofr_[i].begin(), avgGofr_[i].end(), 0); |
67 |
|
} |
69 |
|
|
70 |
|
void GofRAngle::initalizeHistogram() { |
71 |
|
npairs_ = 0; |
72 |
< |
for (int i = 0; i < histogram_.size(); ++i) |
72 |
> |
for (int i = 0; i < histogram_.size(); ++i){ |
73 |
|
std::fill(histogram_[i].begin(), histogram_[i].end(), 0); |
74 |
+ |
} |
75 |
|
} |
76 |
|
|
78 |
– |
|
77 |
|
void GofRAngle::processHistogram() { |
80 |
– |
|
78 |
|
int nPairs = getNPairs(); |
79 |
< |
double volume = info_->getSnapshotManager()->getCurrentSnapshot()->getVolume(); |
80 |
< |
double pairDensity = nPairs /volume; |
81 |
< |
double pairConstant = ( 4.0 * NumericConstant::PI * pairDensity ) / 3.0; |
79 |
> |
RealType volume = info_->getSnapshotManager()->getCurrentSnapshot()->getVolume(); |
80 |
> |
RealType pairDensity = nPairs /volume; |
81 |
> |
RealType pairConstant = ( 4.0 * NumericConstant::PI * pairDensity ) / 3.0; |
82 |
|
|
83 |
|
for(int i = 0 ; i < histogram_.size(); ++i){ |
84 |
|
|
85 |
< |
double rLower = i * deltaR_; |
86 |
< |
double rUpper = rLower + deltaR_; |
87 |
< |
double volSlice = ( rUpper * rUpper * rUpper ) - ( rLower * rLower * rLower ); |
88 |
< |
double nIdeal = volSlice * pairConstant; |
85 |
> |
RealType rLower = i * deltaR_; |
86 |
> |
RealType rUpper = rLower + deltaR_; |
87 |
> |
RealType volSlice = ( rUpper * rUpper * rUpper ) - ( rLower * rLower * rLower ); |
88 |
> |
RealType nIdeal = volSlice * pairConstant; |
89 |
|
|
90 |
|
for (int j = 0; j < histogram_[i].size(); ++j){ |
91 |
|
avgGofr_[i][j] += histogram_[i][j] / nIdeal; |
99 |
|
if (sd1 == sd2) { |
100 |
|
return; |
101 |
|
} |
105 |
– |
|
102 |
|
Vector3d pos1 = sd1->getPos(); |
103 |
|
Vector3d pos2 = sd2->getPos(); |
104 |
|
Vector3d r12 = pos2 - pos1; |
105 |
< |
currentSnapshot_->wrapVector(r12); |
105 |
> |
if (usePeriodicBoundaryConditions_) |
106 |
> |
currentSnapshot_->wrapVector(r12); |
107 |
|
|
108 |
< |
double distance = r12.length(); |
108 |
> |
RealType distance = r12.length(); |
109 |
|
int whichRBin = distance / deltaR_; |
110 |
|
|
111 |
|
if (distance <= len_) { |
112 |
< |
double cosAngle = evaluateAngle(sd1, sd2); |
113 |
< |
double halfBin = (nAngleBins_ - 1) * 0.5; |
112 |
> |
|
113 |
> |
RealType cosAngle = evaluateAngle(sd1, sd2); |
114 |
> |
RealType halfBin = (nAngleBins_ - 1) * 0.5; |
115 |
|
int whichThetaBin = halfBin * (cosAngle + 1.0); |
116 |
|
++histogram_[whichRBin][whichThetaBin]; |
117 |
|
|
128 |
|
rdfStream << "#nRBins = " << nRBins_ << "\t maxLen = " << len_ << "deltaR = " << deltaR_ <<"\n"; |
129 |
|
rdfStream << "#nAngleBins =" << nAngleBins_ << "deltaCosAngle = " << deltaCosAngle_ << "\n"; |
130 |
|
for (int i = 0; i < avgGofr_.size(); ++i) { |
131 |
< |
double r = deltaR_ * (i + 0.5); |
131 |
> |
RealType r = deltaR_ * (i + 0.5); |
132 |
|
|
133 |
|
for(int j = 0; j < avgGofr_[i].size(); ++j) { |
134 |
< |
double cosAngle = -1.0 + (j + 0.5)*deltaCosAngle_; |
134 |
> |
RealType cosAngle = -1.0 + (j + 0.5)*deltaCosAngle_; |
135 |
|
rdfStream << avgGofr_[i][j]/nProcessed_ << "\t"; |
136 |
|
} |
137 |
|
|
147 |
|
rdfStream.close(); |
148 |
|
} |
149 |
|
|
150 |
< |
double GofRTheta::evaluateAngle(StuntDouble* sd1, StuntDouble* sd2) { |
150 |
> |
RealType GofRTheta::evaluateAngle(StuntDouble* sd1, StuntDouble* sd2) { |
151 |
|
Vector3d pos1 = sd1->getPos(); |
152 |
|
Vector3d pos2 = sd2->getPos(); |
153 |
|
Vector3d r12 = pos2 - pos1; |
154 |
< |
currentSnapshot_->wrapVector(r12); |
154 |
> |
|
155 |
> |
if (usePeriodicBoundaryConditions_) |
156 |
> |
currentSnapshot_->wrapVector(r12); |
157 |
> |
|
158 |
|
r12.normalize(); |
159 |
|
Vector3d dipole = sd1->getElectroFrame().getColumn(2); |
160 |
|
dipole.normalize(); |
161 |
|
return dot(r12, dipole); |
162 |
|
} |
163 |
|
|
164 |
< |
double GofROmega::evaluateAngle(StuntDouble* sd1, StuntDouble* sd2) { |
164 |
> |
RealType GofROmega::evaluateAngle(StuntDouble* sd1, StuntDouble* sd2) { |
165 |
|
Vector3d v1 = sd1->getElectroFrame().getColumn(2); |
166 |
|
Vector3d v2 = sd2->getElectroFrame().getColumn(2); |
167 |
|
v1.normalize(); |