1 |
tim |
309 |
/* |
2 |
|
|
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
|
* |
4 |
|
|
* The University of Notre Dame grants you ("Licensee") a |
5 |
|
|
* non-exclusive, royalty free, license to use, modify and |
6 |
|
|
* redistribute this software in source and binary code form, provided |
7 |
|
|
* that the following conditions are met: |
8 |
|
|
* |
9 |
gezelter |
1390 |
* 1. Redistributions of source code must retain the above copyright |
10 |
tim |
309 |
* notice, this list of conditions and the following disclaimer. |
11 |
|
|
* |
12 |
gezelter |
1390 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
tim |
309 |
* notice, this list of conditions and the following disclaimer in the |
14 |
|
|
* documentation and/or other materials provided with the |
15 |
|
|
* distribution. |
16 |
|
|
* |
17 |
|
|
* This software is provided "AS IS," without a warranty of any |
18 |
|
|
* kind. All express or implied conditions, representations and |
19 |
|
|
* warranties, including any implied warranty of merchantability, |
20 |
|
|
* fitness for a particular purpose or non-infringement, are hereby |
21 |
|
|
* excluded. The University of Notre Dame and its licensors shall not |
22 |
|
|
* be liable for any damages suffered by licensee as a result of |
23 |
|
|
* using, modifying or distributing the software or its |
24 |
|
|
* derivatives. In no event will the University of Notre Dame or its |
25 |
|
|
* licensors be liable for any lost revenue, profit or data, or for |
26 |
|
|
* direct, indirect, special, consequential, incidental or punitive |
27 |
|
|
* damages, however caused and regardless of the theory of liability, |
28 |
|
|
* arising out of the use of or inability to use software, even if the |
29 |
|
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
|
* such damages. |
31 |
gezelter |
1390 |
* |
32 |
|
|
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
|
|
* research, please cite the appropriate papers when you publish your |
34 |
|
|
* work. Good starting points are: |
35 |
|
|
* |
36 |
|
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
gezelter |
1879 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
gezelter |
1782 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
|
|
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
tim |
309 |
*/ |
42 |
|
|
|
43 |
|
|
#include <algorithm> |
44 |
|
|
#include <fstream> |
45 |
|
|
#include "applications/staticProps/GofRAngle.hpp" |
46 |
gezelter |
1879 |
#include "primitives/Atom.hpp" |
47 |
|
|
#include "types/MultipoleAdapter.hpp" |
48 |
tim |
309 |
#include "utils/simError.h" |
49 |
|
|
|
50 |
gezelter |
1390 |
namespace OpenMD { |
51 |
tim |
309 |
|
52 |
gezelter |
507 |
GofRAngle::GofRAngle(SimInfo* info, const std::string& filename, const std::string& sele1, |
53 |
tim |
963 |
const std::string& sele2, RealType len, int nrbins, int nangleBins) |
54 |
tim |
354 |
: RadialDistrFunc(info, filename, sele1, sele2), len_(len), nRBins_(nrbins), nAngleBins_(nangleBins){ |
55 |
tim |
309 |
|
56 |
xsun |
1213 |
deltaR_ = len_ /(double) nRBins_; |
57 |
|
|
deltaCosAngle_ = 2.0 / (double)nAngleBins_; |
58 |
gezelter |
507 |
histogram_.resize(nRBins_); |
59 |
|
|
avgGofr_.resize(nRBins_); |
60 |
|
|
for (int i = 0 ; i < nRBins_; ++i) { |
61 |
tim |
354 |
histogram_[i].resize(nAngleBins_); |
62 |
|
|
avgGofr_[i].resize(nAngleBins_); |
63 |
gezelter |
507 |
} |
64 |
tim |
354 |
} |
65 |
tim |
309 |
|
66 |
|
|
|
67 |
gezelter |
507 |
void GofRAngle::preProcess() { |
68 |
gezelter |
1782 |
for (unsigned int i = 0; i < avgGofr_.size(); ++i) { |
69 |
gezelter |
507 |
std::fill(avgGofr_[i].begin(), avgGofr_[i].end(), 0); |
70 |
tim |
310 |
} |
71 |
gezelter |
507 |
} |
72 |
tim |
309 |
|
73 |
jmichalk |
1785 |
void GofRAngle::initializeHistogram() { |
74 |
tim |
309 |
npairs_ = 0; |
75 |
gezelter |
1782 |
for (unsigned int i = 0; i < histogram_.size(); ++i){ |
76 |
gezelter |
507 |
std::fill(histogram_[i].begin(), histogram_[i].end(), 0); |
77 |
xsun |
1213 |
} |
78 |
gezelter |
507 |
} |
79 |
tim |
309 |
|
80 |
gezelter |
507 |
void GofRAngle::processHistogram() { |
81 |
tim |
353 |
int nPairs = getNPairs(); |
82 |
tim |
963 |
RealType volume = info_->getSnapshotManager()->getCurrentSnapshot()->getVolume(); |
83 |
|
|
RealType pairDensity = nPairs /volume; |
84 |
|
|
RealType pairConstant = ( 4.0 * NumericConstant::PI * pairDensity ) / 3.0; |
85 |
tim |
309 |
|
86 |
gezelter |
1782 |
for(unsigned int i = 0 ; i < histogram_.size(); ++i){ |
87 |
tim |
309 |
|
88 |
tim |
963 |
RealType rLower = i * deltaR_; |
89 |
|
|
RealType rUpper = rLower + deltaR_; |
90 |
|
|
RealType volSlice = ( rUpper * rUpper * rUpper ) - ( rLower * rLower * rLower ); |
91 |
|
|
RealType nIdeal = volSlice * pairConstant; |
92 |
tim |
309 |
|
93 |
gezelter |
1782 |
for (unsigned int j = 0; j < histogram_[i].size(); ++j){ |
94 |
gezelter |
507 |
avgGofr_[i][j] += histogram_[i][j] / nIdeal; |
95 |
|
|
} |
96 |
tim |
309 |
} |
97 |
|
|
|
98 |
gezelter |
507 |
} |
99 |
tim |
309 |
|
100 |
gezelter |
507 |
void GofRAngle::collectHistogram(StuntDouble* sd1, StuntDouble* sd2) { |
101 |
tim |
309 |
|
102 |
|
|
if (sd1 == sd2) { |
103 |
gezelter |
507 |
return; |
104 |
tim |
309 |
} |
105 |
|
|
Vector3d pos1 = sd1->getPos(); |
106 |
|
|
Vector3d pos2 = sd2->getPos(); |
107 |
tim |
361 |
Vector3d r12 = pos2 - pos1; |
108 |
gezelter |
1078 |
if (usePeriodicBoundaryConditions_) |
109 |
|
|
currentSnapshot_->wrapVector(r12); |
110 |
tim |
309 |
|
111 |
tim |
963 |
RealType distance = r12.length(); |
112 |
gezelter |
1790 |
int whichRBin = int(distance / deltaR_); |
113 |
tim |
309 |
|
114 |
tim |
328 |
if (distance <= len_) { |
115 |
xsun |
1213 |
|
116 |
tim |
963 |
RealType cosAngle = evaluateAngle(sd1, sd2); |
117 |
|
|
RealType halfBin = (nAngleBins_ - 1) * 0.5; |
118 |
gezelter |
1790 |
int whichThetaBin = int(halfBin * (cosAngle + 1.0)); |
119 |
gezelter |
507 |
++histogram_[whichRBin][whichThetaBin]; |
120 |
tim |
328 |
|
121 |
gezelter |
507 |
++npairs_; |
122 |
tim |
328 |
} |
123 |
gezelter |
507 |
} |
124 |
tim |
309 |
|
125 |
gezelter |
507 |
void GofRAngle::writeRdf() { |
126 |
tim |
309 |
std::ofstream rdfStream(outputFilename_.c_str()); |
127 |
|
|
if (rdfStream.is_open()) { |
128 |
gezelter |
507 |
rdfStream << "#radial distribution function\n"; |
129 |
|
|
rdfStream << "#selection1: (" << selectionScript1_ << ")\t"; |
130 |
|
|
rdfStream << "selection2: (" << selectionScript2_ << ")\n"; |
131 |
|
|
rdfStream << "#nRBins = " << nRBins_ << "\t maxLen = " << len_ << "deltaR = " << deltaR_ <<"\n"; |
132 |
|
|
rdfStream << "#nAngleBins =" << nAngleBins_ << "deltaCosAngle = " << deltaCosAngle_ << "\n"; |
133 |
gezelter |
1782 |
for (unsigned int i = 0; i < avgGofr_.size(); ++i) { |
134 |
gezelter |
1796 |
// RealType r = deltaR_ * (i + 0.5); |
135 |
tim |
309 |
|
136 |
gezelter |
1782 |
for(unsigned int j = 0; j < avgGofr_[i].size(); ++j) { |
137 |
gezelter |
1796 |
// RealType cosAngle = -1.0 + (j + 0.5)*deltaCosAngle_; |
138 |
gezelter |
507 |
rdfStream << avgGofr_[i][j]/nProcessed_ << "\t"; |
139 |
|
|
} |
140 |
tim |
360 |
|
141 |
gezelter |
507 |
rdfStream << "\n"; |
142 |
|
|
} |
143 |
tim |
309 |
|
144 |
|
|
} else { |
145 |
gezelter |
507 |
sprintf(painCave.errMsg, "GofRAngle: unable to open %s\n", outputFilename_.c_str()); |
146 |
|
|
painCave.isFatal = 1; |
147 |
|
|
simError(); |
148 |
tim |
309 |
} |
149 |
|
|
|
150 |
|
|
rdfStream.close(); |
151 |
gezelter |
507 |
} |
152 |
tim |
309 |
|
153 |
tim |
963 |
RealType GofRTheta::evaluateAngle(StuntDouble* sd1, StuntDouble* sd2) { |
154 |
tim |
309 |
Vector3d pos1 = sd1->getPos(); |
155 |
|
|
Vector3d pos2 = sd2->getPos(); |
156 |
tim |
361 |
Vector3d r12 = pos2 - pos1; |
157 |
xsun |
1213 |
|
158 |
gezelter |
1078 |
if (usePeriodicBoundaryConditions_) |
159 |
|
|
currentSnapshot_->wrapVector(r12); |
160 |
|
|
|
161 |
tim |
309 |
r12.normalize(); |
162 |
gezelter |
1879 |
|
163 |
gezelter |
1968 |
Vector3d vec; |
164 |
|
|
|
165 |
|
|
if (sd1->isAtom()) { |
166 |
|
|
AtomType* atype1 = static_cast<Atom*>(sd1)->getAtomType(); |
167 |
|
|
MultipoleAdapter ma1 = MultipoleAdapter(atype1); |
168 |
|
|
|
169 |
|
|
if (ma1.isDipole() ) |
170 |
|
|
vec = sd1->getDipole(); |
171 |
|
|
else |
172 |
|
|
vec = sd1->getA().transpose() * V3Z; |
173 |
|
|
} else { |
174 |
gezelter |
1879 |
vec = sd1->getA().transpose() * V3Z; |
175 |
gezelter |
1968 |
} |
176 |
|
|
|
177 |
gezelter |
1879 |
vec.normalize(); |
178 |
gezelter |
1968 |
|
179 |
gezelter |
1879 |
return dot(r12, vec); |
180 |
gezelter |
507 |
} |
181 |
tim |
309 |
|
182 |
tim |
963 |
RealType GofROmega::evaluateAngle(StuntDouble* sd1, StuntDouble* sd2) { |
183 |
gezelter |
1879 |
Vector3d v1, v2; |
184 |
|
|
|
185 |
gezelter |
1968 |
if (sd1->isAtom()){ |
186 |
|
|
AtomType* atype1 = static_cast<Atom*>(sd1)->getAtomType(); |
187 |
|
|
MultipoleAdapter ma1 = MultipoleAdapter(atype1); |
188 |
|
|
if (ma1.isDipole() ) |
189 |
|
|
v1 = sd1->getDipole(); |
190 |
|
|
else |
191 |
|
|
v1 = sd1->getA().transpose() * V3Z; |
192 |
|
|
} else { |
193 |
gezelter |
1879 |
v1 = sd1->getA().transpose() * V3Z; |
194 |
gezelter |
1968 |
} |
195 |
|
|
|
196 |
|
|
if (sd2->isAtom()) { |
197 |
|
|
AtomType* atype2 = static_cast<Atom*>(sd2)->getAtomType(); |
198 |
|
|
MultipoleAdapter ma2 = MultipoleAdapter(atype2); |
199 |
|
|
|
200 |
|
|
if (ma2.isDipole() ) |
201 |
|
|
v2 = sd2->getDipole(); |
202 |
|
|
else |
203 |
|
|
v2 = sd2->getA().transpose() * V3Z; |
204 |
|
|
} else { |
205 |
gezelter |
1879 |
v2 = sd2->getA().transpose() * V3Z; |
206 |
gezelter |
1968 |
} |
207 |
|
|
|
208 |
tim |
311 |
v1.normalize(); |
209 |
|
|
v2.normalize(); |
210 |
|
|
return dot(v1, v2); |
211 |
gezelter |
507 |
} |
212 |
tim |
309 |
|
213 |
|
|
|
214 |
|
|
} |
215 |
|
|
|
216 |
|
|
|