1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#include <algorithm> |
44 |
#include <fstream> |
45 |
#include "applications/staticProps/GofAngle2.hpp" |
46 |
#include "primitives/Atom.hpp" |
47 |
#include "types/MultipoleAdapter.hpp" |
48 |
#include "utils/simError.h" |
49 |
|
50 |
namespace OpenMD { |
51 |
|
52 |
GofAngle2::GofAngle2(SimInfo* info, const std::string& filename, |
53 |
const std::string& sele1, |
54 |
const std::string& sele2, int nangleBins) |
55 |
: RadialDistrFunc(info, filename, sele1, sele2), nAngleBins_(nangleBins), |
56 |
evaluator3_(info), |
57 |
seleMan3_(info), doSele3_(false) { |
58 |
|
59 |
setOutputName(getPrefix(filename) + ".gto"); |
60 |
|
61 |
deltaCosAngle_ = 2.0 / nAngleBins_; |
62 |
|
63 |
histogram_.resize(nAngleBins_); |
64 |
avgGofr_.resize(nAngleBins_); |
65 |
for (int i = 0 ; i < nAngleBins_; ++i) { |
66 |
histogram_[i].resize(nAngleBins_); |
67 |
avgGofr_[i].resize(nAngleBins_); |
68 |
} |
69 |
} |
70 |
|
71 |
GofAngle2::GofAngle2(SimInfo* info, const std::string& filename, |
72 |
const std::string& sele1, |
73 |
const std::string& sele2, |
74 |
const std::string& sele3, int nangleBins) |
75 |
: RadialDistrFunc(info, filename, sele1, sele2), nAngleBins_(nangleBins), |
76 |
evaluator3_(info), selectionScript3_(sele3), |
77 |
seleMan3_(info), doSele3_(true) { |
78 |
|
79 |
setOutputName(getPrefix(filename) + ".gto"); |
80 |
|
81 |
deltaCosAngle_ = 2.0 / nAngleBins_; |
82 |
|
83 |
histogram_.resize(nAngleBins_); |
84 |
avgGofr_.resize(nAngleBins_); |
85 |
for (int i = 0 ; i < nAngleBins_; ++i) { |
86 |
histogram_[i].resize(nAngleBins_); |
87 |
avgGofr_[i].resize(nAngleBins_); |
88 |
} |
89 |
evaluator3_.loadScriptString(sele3); |
90 |
if (!evaluator3_.isDynamic()) { |
91 |
seleMan3_.setSelectionSet(evaluator3_.evaluate()); |
92 |
} |
93 |
} |
94 |
|
95 |
void GofAngle2::processNonOverlapping( SelectionManager& sman1, |
96 |
SelectionManager& sman2) { |
97 |
StuntDouble* sd1; |
98 |
StuntDouble* sd2; |
99 |
StuntDouble* sd3; |
100 |
int i; |
101 |
int j; |
102 |
int k; |
103 |
|
104 |
// This is the same as a non-overlapping pairwise loop structure: |
105 |
// for (int i = 0; i < ni ; ++i ) { |
106 |
// for (int j = 0; j < nj; ++j) {} |
107 |
// } |
108 |
|
109 |
if (doSele3_) { |
110 |
if (evaluator3_.isDynamic()) { |
111 |
seleMan3_.setSelectionSet(evaluator3_.evaluate()); |
112 |
} |
113 |
if (sman1.getSelectionCount() != seleMan3_.getSelectionCount() ) { |
114 |
RadialDistrFunc::processNonOverlapping( sman1, sman2 ); |
115 |
} |
116 |
|
117 |
for (sd1 = sman1.beginSelected(i), sd3 = seleMan3_.beginSelected(k); |
118 |
sd1 != NULL && sd3 != NULL; |
119 |
sd1 = sman1.nextSelected(i), sd3 = seleMan3_.nextSelected(k)) { |
120 |
for (sd2 = sman2.beginSelected(j); sd2 != NULL; |
121 |
sd2 = sman2.nextSelected(j)) { |
122 |
collectHistogram(sd1, sd2, sd3); |
123 |
} |
124 |
} |
125 |
} else { |
126 |
RadialDistrFunc::processNonOverlapping( sman1, sman2 ); |
127 |
} |
128 |
} |
129 |
|
130 |
void GofAngle2::processOverlapping( SelectionManager& sman) { |
131 |
StuntDouble* sd1; |
132 |
StuntDouble* sd2; |
133 |
StuntDouble* sd3; |
134 |
int i; |
135 |
int j; |
136 |
int k; |
137 |
|
138 |
// This is the same as a pairwise loop structure: |
139 |
// for (int i = 0; i < n-1 ; ++i ) { |
140 |
// for (int j = i + 1; j < n; ++j) {} |
141 |
// } |
142 |
|
143 |
if (doSele3_) { |
144 |
if (evaluator3_.isDynamic()) { |
145 |
seleMan3_.setSelectionSet(evaluator3_.evaluate()); |
146 |
} |
147 |
if (sman.getSelectionCount() != seleMan3_.getSelectionCount() ) { |
148 |
RadialDistrFunc::processOverlapping( sman); |
149 |
} |
150 |
for (sd1 = sman.beginSelected(i), sd3 = seleMan3_.beginSelected(k); |
151 |
sd1 != NULL && sd3 != NULL; |
152 |
sd1 = sman.nextSelected(i), sd3 = seleMan3_.nextSelected(k)) { |
153 |
for (j = i, sd2 = sman.nextSelected(j); sd2 != NULL; |
154 |
sd2 = sman.nextSelected(j)) { |
155 |
collectHistogram(sd1, sd2, sd3); |
156 |
} |
157 |
} |
158 |
} else { |
159 |
RadialDistrFunc::processOverlapping( sman); |
160 |
} |
161 |
} |
162 |
|
163 |
|
164 |
void GofAngle2::preProcess() { |
165 |
|
166 |
for (unsigned int i = 0; i < avgGofr_.size(); ++i) { |
167 |
std::fill(avgGofr_[i].begin(), avgGofr_[i].end(), 0); |
168 |
} |
169 |
} |
170 |
|
171 |
void GofAngle2::initializeHistogram() { |
172 |
npairs_ = 0; |
173 |
for (unsigned int i = 0; i < histogram_.size(); ++i) |
174 |
std::fill(histogram_[i].begin(), histogram_[i].end(), 0); |
175 |
} |
176 |
|
177 |
|
178 |
void GofAngle2::processHistogram() { |
179 |
|
180 |
//std::for_each(avgGofr_.begin(), avgGofr_.end(), std::plus<std::vector<int>>) |
181 |
|
182 |
} |
183 |
|
184 |
void GofAngle2::collectHistogram(StuntDouble* sd1, StuntDouble* sd2) { |
185 |
|
186 |
if (sd1 == sd2) { |
187 |
return; |
188 |
} |
189 |
|
190 |
Vector3d pos1 = sd1->getPos(); |
191 |
Vector3d pos2 = sd2->getPos(); |
192 |
Vector3d r12 = pos1 - pos2; |
193 |
if (usePeriodicBoundaryConditions_) |
194 |
currentSnapshot_->wrapVector(r12); |
195 |
|
196 |
AtomType* atype1 = static_cast<Atom*>(sd1)->getAtomType(); |
197 |
AtomType* atype2 = static_cast<Atom*>(sd2)->getAtomType(); |
198 |
MultipoleAdapter ma1 = MultipoleAdapter(atype1); |
199 |
MultipoleAdapter ma2 = MultipoleAdapter(atype2); |
200 |
|
201 |
if (!sd1->isDirectional()) { |
202 |
sprintf(painCave.errMsg, |
203 |
"GofAngle2: attempted to use a non-directional object: %s\n", |
204 |
sd1->getType().c_str()); |
205 |
painCave.isFatal = 1; |
206 |
simError(); |
207 |
} |
208 |
|
209 |
if (!sd2->isDirectional()) { |
210 |
sprintf(painCave.errMsg, |
211 |
"GofAngle2: attempted to use a non-directional object: %s\n", |
212 |
sd2->getType().c_str()); |
213 |
painCave.isFatal = 1; |
214 |
simError(); |
215 |
} |
216 |
|
217 |
Vector3d dipole1, dipole2; |
218 |
if (ma1.isDipole()) |
219 |
dipole1 = sd1->getDipole(); |
220 |
else |
221 |
dipole1 = sd1->getA().transpose() * V3Z; |
222 |
|
223 |
if (ma2.isDipole()) |
224 |
dipole2 = sd2->getDipole(); |
225 |
else |
226 |
dipole2 = sd2->getA().transpose() * V3Z; |
227 |
|
228 |
r12.normalize(); |
229 |
dipole1.normalize(); |
230 |
dipole2.normalize(); |
231 |
|
232 |
|
233 |
RealType cosAngle1 = dot(r12, dipole1); |
234 |
RealType cosAngle2 = dot(dipole1, dipole2); |
235 |
|
236 |
RealType halfBin = (nAngleBins_ - 1) * 0.5; |
237 |
int angleBin1 = int(halfBin * (cosAngle1 + 1.0)); |
238 |
int angleBin2 = int(halfBin * (cosAngle2 + 1.0)); |
239 |
|
240 |
++histogram_[angleBin1][angleBin2]; |
241 |
++npairs_; |
242 |
} |
243 |
|
244 |
void GofAngle2::collectHistogram(StuntDouble* sd1, StuntDouble* sd2, |
245 |
StuntDouble* sd3) { |
246 |
|
247 |
if (sd1 == sd2) { |
248 |
return; |
249 |
} |
250 |
|
251 |
Vector3d p1 = sd1->getPos(); |
252 |
Vector3d p3 = sd3->getPos(); |
253 |
|
254 |
Vector3d c = 0.5 * (p1 + p3); |
255 |
Vector3d r13 = p3 - p1; |
256 |
|
257 |
Vector3d r12 = sd2->getPos() - c; |
258 |
|
259 |
if (usePeriodicBoundaryConditions_) { |
260 |
currentSnapshot_->wrapVector(r12); |
261 |
currentSnapshot_->wrapVector(r13); |
262 |
} |
263 |
r12.normalize(); |
264 |
r13.normalize(); |
265 |
|
266 |
if (!sd2->isDirectional()) { |
267 |
sprintf(painCave.errMsg, |
268 |
"GofAngle2: attempted to use a non-directional object: %s\n", |
269 |
sd2->getType().c_str()); |
270 |
painCave.isFatal = 1; |
271 |
simError(); |
272 |
} |
273 |
|
274 |
AtomType* atype2 = static_cast<Atom*>(sd2)->getAtomType(); |
275 |
MultipoleAdapter ma2 = MultipoleAdapter(atype2); |
276 |
|
277 |
Vector3d dipole2; |
278 |
if (ma2.isDipole()) |
279 |
dipole2 = sd2->getDipole(); |
280 |
else |
281 |
dipole2 = sd2->getA().transpose() * V3Z; |
282 |
|
283 |
dipole2.normalize(); |
284 |
|
285 |
RealType cosAngle1 = dot(r12, r13); |
286 |
RealType cosAngle2 = dot(r13, dipole2); |
287 |
|
288 |
RealType halfBin = (nAngleBins_ - 1) * 0.5; |
289 |
int angleBin1 = int(halfBin * (cosAngle1 + 1.0)); |
290 |
int angleBin2 = int(halfBin * (cosAngle2 + 1.0)); |
291 |
|
292 |
++histogram_[angleBin1][angleBin2]; |
293 |
++npairs_; |
294 |
|
295 |
} |
296 |
|
297 |
void GofAngle2::writeRdf() { |
298 |
std::ofstream rdfStream(outputFilename_.c_str()); |
299 |
if (rdfStream.is_open()) { |
300 |
rdfStream << "#radial distribution function\n"; |
301 |
rdfStream << "#selection1: (" << selectionScript1_ << ")\t"; |
302 |
rdfStream << "selection2: (" << selectionScript2_ << ")"; |
303 |
if (doSele3_) { |
304 |
rdfStream << "\tselection3: (" << selectionScript3_ << ")\n"; |
305 |
} else { |
306 |
rdfStream << "\n"; |
307 |
} |
308 |
rdfStream << "#nAngleBins =" << nAngleBins_ << "deltaCosAngle = " |
309 |
<< deltaCosAngle_ << "\n"; |
310 |
for (unsigned int i = 0; i < avgGofr_.size(); ++i) { |
311 |
// RealType cosAngle1 = -1.0 + (i + 0.5)*deltaCosAngle_; |
312 |
|
313 |
for(unsigned int j = 0; j < avgGofr_[i].size(); ++j) { |
314 |
// RealType cosAngle2 = -1.0 + (j + 0.5)*deltaCosAngle_; |
315 |
rdfStream <<avgGofr_[i][j]/nProcessed_ << "\t"; |
316 |
} |
317 |
rdfStream << "\n"; |
318 |
} |
319 |
|
320 |
} else { |
321 |
|
322 |
sprintf(painCave.errMsg, "GofAngle2: unable to open %s\n", |
323 |
outputFilename_.c_str()); |
324 |
painCave.isFatal = 1; |
325 |
simError(); |
326 |
} |
327 |
|
328 |
rdfStream.close(); |
329 |
} |
330 |
|
331 |
} |