| 1 |
/* |
| 2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
| 3 |
* |
| 4 |
* The University of Notre Dame grants you ("Licensee") a |
| 5 |
* non-exclusive, royalty free, license to use, modify and |
| 6 |
* redistribute this software in source and binary code form, provided |
| 7 |
* that the following conditions are met: |
| 8 |
* |
| 9 |
* 1. Redistributions of source code must retain the above copyright |
| 10 |
* notice, this list of conditions and the following disclaimer. |
| 11 |
* |
| 12 |
* 2. Redistributions in binary form must reproduce the above copyright |
| 13 |
* notice, this list of conditions and the following disclaimer in the |
| 14 |
* documentation and/or other materials provided with the |
| 15 |
* distribution. |
| 16 |
* |
| 17 |
* This software is provided "AS IS," without a warranty of any |
| 18 |
* kind. All express or implied conditions, representations and |
| 19 |
* warranties, including any implied warranty of merchantability, |
| 20 |
* fitness for a particular purpose or non-infringement, are hereby |
| 21 |
* excluded. The University of Notre Dame and its licensors shall not |
| 22 |
* be liable for any damages suffered by licensee as a result of |
| 23 |
* using, modifying or distributing the software or its |
| 24 |
* derivatives. In no event will the University of Notre Dame or its |
| 25 |
* licensors be liable for any lost revenue, profit or data, or for |
| 26 |
* direct, indirect, special, consequential, incidental or punitive |
| 27 |
* damages, however caused and regardless of the theory of liability, |
| 28 |
* arising out of the use of or inability to use software, even if the |
| 29 |
* University of Notre Dame has been advised of the possibility of |
| 30 |
* such damages. |
| 31 |
* |
| 32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
| 33 |
* research, please cite the appropriate papers when you publish your |
| 34 |
* work. Good starting points are: |
| 35 |
* |
| 36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
| 37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
| 38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
| 39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
| 40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
| 41 |
*/ |
| 42 |
|
| 43 |
#include <algorithm> |
| 44 |
#include <functional> |
| 45 |
#include "applications/staticProps/DensityPlot.hpp" |
| 46 |
#include "utils/simError.h" |
| 47 |
#include "io/DumpReader.hpp" |
| 48 |
#include "primitives/Molecule.hpp" |
| 49 |
#include "utils/NumericConstant.hpp" |
| 50 |
#include "types/LennardJonesAdapter.hpp" |
| 51 |
|
| 52 |
namespace OpenMD { |
| 53 |
|
| 54 |
|
| 55 |
DensityPlot::DensityPlot(SimInfo* info, const std::string& filename, const std::string& sele, const std::string& cmSele, RealType len, int nrbins) |
| 56 |
: StaticAnalyser(info, filename), selectionScript_(sele), evaluator_(info), seleMan_(info), |
| 57 |
cmSelectionScript_(cmSele), cmEvaluator_(info), cmSeleMan_(info), |
| 58 |
len_(len), nRBins_(nrbins), halfLen_(len/2) { |
| 59 |
|
| 60 |
setOutputName(getPrefix(filename) + ".density"); |
| 61 |
|
| 62 |
deltaR_ = len_ /nRBins_; |
| 63 |
histogram_.resize(nRBins_); |
| 64 |
density_.resize(nRBins_); |
| 65 |
|
| 66 |
std::fill(histogram_.begin(), histogram_.end(), 0); |
| 67 |
|
| 68 |
evaluator_.loadScriptString(sele); |
| 69 |
|
| 70 |
if (!evaluator_.isDynamic()) { |
| 71 |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
| 72 |
} |
| 73 |
|
| 74 |
cmEvaluator_.loadScriptString(cmSele); |
| 75 |
if (!cmEvaluator_.isDynamic()) { |
| 76 |
cmSeleMan_.setSelectionSet(cmEvaluator_.evaluate()); |
| 77 |
} |
| 78 |
|
| 79 |
|
| 80 |
} |
| 81 |
|
| 82 |
void DensityPlot::process() { |
| 83 |
Molecule* mol; |
| 84 |
RigidBody* rb; |
| 85 |
SimInfo::MoleculeIterator mi; |
| 86 |
Molecule::RigidBodyIterator rbIter; |
| 87 |
|
| 88 |
DumpReader reader(info_, dumpFilename_); |
| 89 |
int nFrames = reader.getNFrames(); |
| 90 |
for (int i = 0; i < nFrames; i += step_) { |
| 91 |
reader.readFrame(i); |
| 92 |
currentSnapshot_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 93 |
|
| 94 |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) { |
| 95 |
//change the positions of atoms which belong to the rigidbodies |
| 96 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
| 97 |
rb->updateAtoms(); |
| 98 |
} |
| 99 |
|
| 100 |
} |
| 101 |
|
| 102 |
if (evaluator_.isDynamic()) { |
| 103 |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
| 104 |
} |
| 105 |
|
| 106 |
if (cmEvaluator_.isDynamic()) { |
| 107 |
cmSeleMan_.setSelectionSet(cmEvaluator_.evaluate()); |
| 108 |
} |
| 109 |
|
| 110 |
Vector3d origin = calcNewOrigin(); |
| 111 |
|
| 112 |
Mat3x3d hmat = currentSnapshot_->getHmat(); |
| 113 |
RealType slabVolume = deltaR_ * hmat(0, 0) * hmat(1, 1); |
| 114 |
int k; |
| 115 |
for (StuntDouble* sd = seleMan_.beginSelected(k); sd != NULL; sd = seleMan_.nextSelected(k)) { |
| 116 |
|
| 117 |
|
| 118 |
if (!sd->isAtom()) { |
| 119 |
sprintf( painCave.errMsg, "Can not calculate electron density if it is not atom\n"); |
| 120 |
painCave.severity = OPENMD_ERROR; |
| 121 |
painCave.isFatal = 1; |
| 122 |
simError(); |
| 123 |
} |
| 124 |
|
| 125 |
Atom* atom = static_cast<Atom*>(sd); |
| 126 |
GenericData* data = atom->getAtomType()->getPropertyByName("nelectron"); |
| 127 |
if (data == NULL) { |
| 128 |
sprintf( painCave.errMsg, "Can not find Parameters for nelectron\n"); |
| 129 |
painCave.severity = OPENMD_ERROR; |
| 130 |
painCave.isFatal = 1; |
| 131 |
simError(); |
| 132 |
} |
| 133 |
|
| 134 |
DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data); |
| 135 |
if (doubleData == NULL) { |
| 136 |
sprintf( painCave.errMsg, |
| 137 |
"Can not cast GenericData to DoubleGenericData\n"); |
| 138 |
painCave.severity = OPENMD_ERROR; |
| 139 |
painCave.isFatal = 1; |
| 140 |
simError(); |
| 141 |
} |
| 142 |
|
| 143 |
RealType nelectron = doubleData->getData(); |
| 144 |
LennardJonesAdapter lja = LennardJonesAdapter(atom->getAtomType()); |
| 145 |
RealType sigma = lja.getSigma() * 0.5; |
| 146 |
RealType sigma2 = sigma * sigma; |
| 147 |
|
| 148 |
Vector3d pos = sd->getPos() - origin; |
| 149 |
for (int j =0; j < nRBins_; ++j) { |
| 150 |
Vector3d tmp(pos); |
| 151 |
RealType zdist =j * deltaR_ - halfLen_; |
| 152 |
tmp[2] += zdist; |
| 153 |
if (usePeriodicBoundaryConditions_) |
| 154 |
currentSnapshot_->wrapVector(tmp); |
| 155 |
|
| 156 |
RealType wrappedZdist = tmp.z() + halfLen_; |
| 157 |
if (wrappedZdist < 0.0 || wrappedZdist > len_) { |
| 158 |
continue; |
| 159 |
} |
| 160 |
|
| 161 |
int which = int(wrappedZdist / deltaR_); |
| 162 |
density_[which] += nelectron * exp(-zdist*zdist/(sigma2*2.0)) /(slabVolume* sqrt(2*NumericConstant::PI*sigma*sigma)); |
| 163 |
|
| 164 |
} |
| 165 |
} |
| 166 |
} |
| 167 |
|
| 168 |
int nProcessed = nFrames /step_; |
| 169 |
std::transform(density_.begin(), density_.end(), density_.begin(), std::bind2nd(std::divides<RealType>(), nProcessed)); |
| 170 |
writeDensity(); |
| 171 |
|
| 172 |
|
| 173 |
|
| 174 |
} |
| 175 |
|
| 176 |
Vector3d DensityPlot::calcNewOrigin() { |
| 177 |
|
| 178 |
int i; |
| 179 |
Vector3d newOrigin(0.0); |
| 180 |
RealType totalMass = 0.0; |
| 181 |
for (StuntDouble* sd = seleMan_.beginSelected(i); sd != NULL; sd = seleMan_.nextSelected(i)) { |
| 182 |
RealType mass = sd->getMass(); |
| 183 |
totalMass += mass; |
| 184 |
newOrigin += sd->getPos() * mass; |
| 185 |
} |
| 186 |
newOrigin /= totalMass; |
| 187 |
return newOrigin; |
| 188 |
} |
| 189 |
|
| 190 |
void DensityPlot::writeDensity() { |
| 191 |
std::ofstream ofs(outputFilename_.c_str(), std::ios::binary); |
| 192 |
if (ofs.is_open()) { |
| 193 |
ofs << "#g(x, y, z)\n"; |
| 194 |
ofs << "#selection: (" << selectionScript_ << ")\n"; |
| 195 |
ofs << "#cmSelection:(" << cmSelectionScript_ << ")\n"; |
| 196 |
ofs << "#nRBins = " << nRBins_ << "\t maxLen = " << len_ << "\tdeltaR = " << deltaR_ <<"\n"; |
| 197 |
for (unsigned int i = 0; i < histogram_.size(); ++i) { |
| 198 |
ofs << i*deltaR_ - halfLen_ <<"\t" << density_[i]<< std::endl; |
| 199 |
} |
| 200 |
} else { |
| 201 |
|
| 202 |
sprintf(painCave.errMsg, "DensityPlot: unable to open %s\n", outputFilename_.c_str()); |
| 203 |
painCave.isFatal = 1; |
| 204 |
simError(); |
| 205 |
} |
| 206 |
|
| 207 |
ofs.close(); |
| 208 |
|
| 209 |
|
| 210 |
} |
| 211 |
|
| 212 |
} |
| 213 |
|
| 214 |
|