1 |
tim |
545 |
/* |
2 |
|
|
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
|
* |
4 |
|
|
* The University of Notre Dame grants you ("Licensee") a |
5 |
|
|
* non-exclusive, royalty free, license to use, modify and |
6 |
|
|
* redistribute this software in source and binary code form, provided |
7 |
|
|
* that the following conditions are met: |
8 |
|
|
* |
9 |
gezelter |
1390 |
* 1. Redistributions of source code must retain the above copyright |
10 |
tim |
545 |
* notice, this list of conditions and the following disclaimer. |
11 |
|
|
* |
12 |
gezelter |
1390 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
tim |
545 |
* notice, this list of conditions and the following disclaimer in the |
14 |
|
|
* documentation and/or other materials provided with the |
15 |
|
|
* distribution. |
16 |
|
|
* |
17 |
|
|
* This software is provided "AS IS," without a warranty of any |
18 |
|
|
* kind. All express or implied conditions, representations and |
19 |
|
|
* warranties, including any implied warranty of merchantability, |
20 |
|
|
* fitness for a particular purpose or non-infringement, are hereby |
21 |
|
|
* excluded. The University of Notre Dame and its licensors shall not |
22 |
|
|
* be liable for any damages suffered by licensee as a result of |
23 |
|
|
* using, modifying or distributing the software or its |
24 |
|
|
* derivatives. In no event will the University of Notre Dame or its |
25 |
|
|
* licensors be liable for any lost revenue, profit or data, or for |
26 |
|
|
* direct, indirect, special, consequential, incidental or punitive |
27 |
|
|
* damages, however caused and regardless of the theory of liability, |
28 |
|
|
* arising out of the use of or inability to use software, even if the |
29 |
|
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
|
* such damages. |
31 |
gezelter |
1390 |
* |
32 |
|
|
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
|
|
* research, please cite the appropriate papers when you publish your |
34 |
|
|
* work. Good starting points are: |
35 |
|
|
* |
36 |
|
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
gezelter |
1879 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
gezelter |
1782 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
|
|
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
tim |
545 |
*/ |
42 |
|
|
|
43 |
|
|
#include <algorithm> |
44 |
tim |
565 |
#include <functional> |
45 |
tim |
545 |
#include "applications/staticProps/DensityPlot.hpp" |
46 |
|
|
#include "utils/simError.h" |
47 |
|
|
#include "io/DumpReader.hpp" |
48 |
|
|
#include "primitives/Molecule.hpp" |
49 |
|
|
#include "utils/NumericConstant.hpp" |
50 |
gezelter |
1782 |
#include "types/LennardJonesAdapter.hpp" |
51 |
|
|
|
52 |
gezelter |
1390 |
namespace OpenMD { |
53 |
tim |
545 |
|
54 |
|
|
|
55 |
gezelter |
1782 |
DensityPlot::DensityPlot(SimInfo* info, const std::string& filename, const std::string& sele, const std::string& cmSele, RealType len, int nrbins) |
56 |
|
|
: StaticAnalyser(info, filename), selectionScript_(sele), evaluator_(info), seleMan_(info), |
57 |
|
|
cmSelectionScript_(cmSele), cmEvaluator_(info), cmSeleMan_(info), |
58 |
|
|
len_(len), nRBins_(nrbins), halfLen_(len/2) { |
59 |
tim |
545 |
|
60 |
|
|
setOutputName(getPrefix(filename) + ".density"); |
61 |
|
|
|
62 |
|
|
deltaR_ = len_ /nRBins_; |
63 |
|
|
histogram_.resize(nRBins_); |
64 |
|
|
density_.resize(nRBins_); |
65 |
|
|
|
66 |
|
|
std::fill(histogram_.begin(), histogram_.end(), 0); |
67 |
|
|
|
68 |
|
|
evaluator_.loadScriptString(sele); |
69 |
|
|
|
70 |
|
|
if (!evaluator_.isDynamic()) { |
71 |
|
|
seleMan_.setSelectionSet(evaluator_.evaluate()); |
72 |
|
|
} |
73 |
tim |
558 |
|
74 |
|
|
cmEvaluator_.loadScriptString(cmSele); |
75 |
|
|
if (!cmEvaluator_.isDynamic()) { |
76 |
|
|
cmSeleMan_.setSelectionSet(cmEvaluator_.evaluate()); |
77 |
|
|
} |
78 |
tim |
545 |
|
79 |
tim |
558 |
|
80 |
tim |
545 |
} |
81 |
|
|
|
82 |
gezelter |
1782 |
void DensityPlot::process() { |
83 |
|
|
Molecule* mol; |
84 |
|
|
RigidBody* rb; |
85 |
|
|
SimInfo::MoleculeIterator mi; |
86 |
|
|
Molecule::RigidBodyIterator rbIter; |
87 |
tim |
545 |
|
88 |
gezelter |
1782 |
DumpReader reader(info_, dumpFilename_); |
89 |
|
|
int nFrames = reader.getNFrames(); |
90 |
|
|
for (int i = 0; i < nFrames; i += step_) { |
91 |
|
|
reader.readFrame(i); |
92 |
|
|
currentSnapshot_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
93 |
|
|
|
94 |
|
|
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) { |
95 |
tim |
545 |
//change the positions of atoms which belong to the rigidbodies |
96 |
|
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
97 |
gezelter |
1782 |
rb->updateAtoms(); |
98 |
tim |
545 |
} |
99 |
|
|
|
100 |
gezelter |
1782 |
} |
101 |
tim |
545 |
|
102 |
gezelter |
1782 |
if (evaluator_.isDynamic()) { |
103 |
tim |
545 |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
104 |
gezelter |
1782 |
} |
105 |
tim |
545 |
|
106 |
gezelter |
1782 |
if (cmEvaluator_.isDynamic()) { |
107 |
tim |
558 |
cmSeleMan_.setSelectionSet(cmEvaluator_.evaluate()); |
108 |
gezelter |
1782 |
} |
109 |
tim |
558 |
|
110 |
gezelter |
1782 |
Vector3d origin = calcNewOrigin(); |
111 |
tim |
558 |
|
112 |
gezelter |
1782 |
Mat3x3d hmat = currentSnapshot_->getHmat(); |
113 |
|
|
RealType slabVolume = deltaR_ * hmat(0, 0) * hmat(1, 1); |
114 |
|
|
int k; |
115 |
|
|
for (StuntDouble* sd = seleMan_.beginSelected(k); sd != NULL; sd = seleMan_.nextSelected(k)) { |
116 |
tim |
545 |
|
117 |
tim |
558 |
|
118 |
gezelter |
1782 |
if (!sd->isAtom()) { |
119 |
|
|
sprintf( painCave.errMsg, "Can not calculate electron density if it is not atom\n"); |
120 |
|
|
painCave.severity = OPENMD_ERROR; |
121 |
|
|
painCave.isFatal = 1; |
122 |
|
|
simError(); |
123 |
|
|
} |
124 |
tim |
558 |
|
125 |
gezelter |
1782 |
Atom* atom = static_cast<Atom*>(sd); |
126 |
|
|
GenericData* data = atom->getAtomType()->getPropertyByName("nelectron"); |
127 |
|
|
if (data == NULL) { |
128 |
|
|
sprintf( painCave.errMsg, "Can not find Parameters for nelectron\n"); |
129 |
|
|
painCave.severity = OPENMD_ERROR; |
130 |
|
|
painCave.isFatal = 1; |
131 |
|
|
simError(); |
132 |
|
|
} |
133 |
tim |
558 |
|
134 |
gezelter |
1782 |
DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data); |
135 |
|
|
if (doubleData == NULL) { |
136 |
|
|
sprintf( painCave.errMsg, |
137 |
|
|
"Can not cast GenericData to DoubleGenericData\n"); |
138 |
|
|
painCave.severity = OPENMD_ERROR; |
139 |
|
|
painCave.isFatal = 1; |
140 |
|
|
simError(); |
141 |
|
|
} |
142 |
tim |
558 |
|
143 |
gezelter |
1782 |
RealType nelectron = doubleData->getData(); |
144 |
|
|
LennardJonesAdapter lja = LennardJonesAdapter(atom->getAtomType()); |
145 |
|
|
RealType sigma = lja.getSigma() * 0.5; |
146 |
|
|
RealType sigma2 = sigma * sigma; |
147 |
tim |
558 |
|
148 |
gezelter |
1782 |
Vector3d pos = sd->getPos() - origin; |
149 |
|
|
for (int j =0; j < nRBins_; ++j) { |
150 |
|
|
Vector3d tmp(pos); |
151 |
|
|
RealType zdist =j * deltaR_ - halfLen_; |
152 |
|
|
tmp[2] += zdist; |
153 |
|
|
if (usePeriodicBoundaryConditions_) |
154 |
|
|
currentSnapshot_->wrapVector(tmp); |
155 |
|
|
|
156 |
|
|
RealType wrappedZdist = tmp.z() + halfLen_; |
157 |
|
|
if (wrappedZdist < 0.0 || wrappedZdist > len_) { |
158 |
|
|
continue; |
159 |
|
|
} |
160 |
|
|
|
161 |
gezelter |
1790 |
int which = int(wrappedZdist / deltaR_); |
162 |
gezelter |
1782 |
density_[which] += nelectron * exp(-zdist*zdist/(sigma2*2.0)) /(slabVolume* sqrt(2*NumericConstant::PI*sigma*sigma)); |
163 |
|
|
|
164 |
|
|
} |
165 |
|
|
} |
166 |
tim |
545 |
} |
167 |
gezelter |
1782 |
|
168 |
|
|
int nProcessed = nFrames /step_; |
169 |
|
|
std::transform(density_.begin(), density_.end(), density_.begin(), std::bind2nd(std::divides<RealType>(), nProcessed)); |
170 |
|
|
writeDensity(); |
171 |
tim |
545 |
|
172 |
|
|
|
173 |
|
|
|
174 |
gezelter |
1782 |
} |
175 |
tim |
545 |
|
176 |
gezelter |
1782 |
Vector3d DensityPlot::calcNewOrigin() { |
177 |
tim |
558 |
|
178 |
|
|
int i; |
179 |
|
|
Vector3d newOrigin(0.0); |
180 |
tim |
963 |
RealType totalMass = 0.0; |
181 |
tim |
558 |
for (StuntDouble* sd = seleMan_.beginSelected(i); sd != NULL; sd = seleMan_.nextSelected(i)) { |
182 |
gezelter |
1782 |
RealType mass = sd->getMass(); |
183 |
|
|
totalMass += mass; |
184 |
|
|
newOrigin += sd->getPos() * mass; |
185 |
tim |
558 |
} |
186 |
|
|
newOrigin /= totalMass; |
187 |
|
|
return newOrigin; |
188 |
gezelter |
1782 |
} |
189 |
tim |
558 |
|
190 |
gezelter |
1782 |
void DensityPlot::writeDensity() { |
191 |
tim |
545 |
std::ofstream ofs(outputFilename_.c_str(), std::ios::binary); |
192 |
|
|
if (ofs.is_open()) { |
193 |
|
|
ofs << "#g(x, y, z)\n"; |
194 |
tim |
558 |
ofs << "#selection: (" << selectionScript_ << ")\n"; |
195 |
|
|
ofs << "#cmSelection:(" << cmSelectionScript_ << ")\n"; |
196 |
|
|
ofs << "#nRBins = " << nRBins_ << "\t maxLen = " << len_ << "\tdeltaR = " << deltaR_ <<"\n"; |
197 |
gezelter |
1782 |
for (unsigned int i = 0; i < histogram_.size(); ++i) { |
198 |
|
|
ofs << i*deltaR_ - halfLen_ <<"\t" << density_[i]<< std::endl; |
199 |
tim |
545 |
} |
200 |
|
|
} else { |
201 |
|
|
|
202 |
|
|
sprintf(painCave.errMsg, "DensityPlot: unable to open %s\n", outputFilename_.c_str()); |
203 |
|
|
painCave.isFatal = 1; |
204 |
|
|
simError(); |
205 |
|
|
} |
206 |
|
|
|
207 |
|
|
ofs.close(); |
208 |
|
|
|
209 |
|
|
|
210 |
gezelter |
1782 |
} |
211 |
tim |
545 |
|
212 |
|
|
} |
213 |
|
|
|
214 |
|
|
|