6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
|
* |
32 |
< |
* BondOrderParameter.cpp |
33 |
< |
* OOPSE-4 |
34 |
< |
* |
32 |
> |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
> |
* research, please cite the appropriate papers when you publish your |
34 |
> |
* work. Good starting points are: |
35 |
> |
* |
36 |
> |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
> |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
> |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
> |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
> |
* [4] , Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). * |
41 |
|
* Created by J. Daniel Gezelter on 09/26/06. |
42 |
|
* @author J. Daniel Gezelter |
43 |
< |
* @version $Id: BondOrderParameter.cpp,v 1.18 2006-09-26 16:08:44 gezelter Exp $ |
43 |
> |
* @version $Id$ |
44 |
|
* |
45 |
|
*/ |
46 |
|
|
49 |
|
#include "io/DumpReader.hpp" |
50 |
|
#include "primitives/Molecule.hpp" |
51 |
|
#include "utils/NumericConstant.hpp" |
52 |
+ |
#include "math/Wigner3jm.hpp" |
53 |
|
|
54 |
< |
namespace oopse { |
54 |
> |
using namespace MATPACK; |
55 |
> |
namespace OpenMD { |
56 |
|
|
57 |
|
BondOrderParameter::BondOrderParameter(SimInfo* info, |
58 |
|
const std::string& filename, |
82 |
|
// W_6 for icosahedral clusters is 11 / sqrt(4199) = 0.169754, so we'll |
83 |
|
// use values for MinW_ and MaxW_ that are slightly larger than this: |
84 |
|
|
85 |
< |
MinW_ = -0.25; |
86 |
< |
MaxW_ = 0.25; |
85 |
> |
MinW_ = -1.1; |
86 |
> |
MaxW_ = 1.1; |
87 |
|
deltaW_ = (MaxW_ - MinW_) / nbins; |
88 |
|
|
89 |
|
// Make arrays for Wigner3jm |
90 |
< |
double* THRCOF = new double[2*lMax_+1]; |
90 |
> |
RealType* THRCOF = new RealType[2*lMax_+1]; |
91 |
|
// Variables for Wigner routine |
92 |
< |
double lPass, m1Pass, m2m, m2M; |
92 |
> |
RealType lPass, m1Pass, m2m, m2M; |
93 |
|
int error, mSize; |
94 |
|
mSize = 2*lMax_+1; |
95 |
|
|
96 |
|
for (int l = 0; l <= lMax_; l++) { |
97 |
< |
lPass = (double)l; |
97 |
> |
lPass = (RealType)l; |
98 |
|
for (int m1 = -l; m1 <= l; m1++) { |
99 |
< |
m1Pass = (double)m1; |
99 |
> |
m1Pass = (RealType)m1; |
100 |
|
|
101 |
|
std::pair<int,int> lm = std::make_pair(l, m1); |
102 |
|
|
104 |
|
for (int ii = 0; ii < 2*l + 1; ii++){ |
105 |
|
THRCOF[ii] = 0.0; |
106 |
|
} |
107 |
< |
|
107 |
> |
|
108 |
|
// Get Wigner coefficients |
109 |
< |
Wigner3jm(&lPass, &lPass, &lPass, |
110 |
< |
&m1Pass, &m2m, &m2M, |
111 |
< |
THRCOF, &mSize, &error); |
112 |
< |
|
109 |
> |
Wigner3jm(lPass, lPass, lPass, |
110 |
> |
m1Pass, m2m, m2M, |
111 |
> |
THRCOF, mSize, error); |
112 |
> |
|
113 |
|
m2Min[lm] = (int)floor(m2m); |
114 |
|
m2Max[lm] = (int)floor(m2M); |
115 |
|
|
116 |
< |
for (int mmm = 0; mmm < (int)(m2M - m2m); mmm++) { |
116 |
> |
for (int mmm = 0; mmm <= (int)(m2M - m2m); mmm++) { |
117 |
|
w3j[lm].push_back(THRCOF[mmm]); |
118 |
|
} |
119 |
|
} |
135 |
|
m2Max.clear(); |
136 |
|
} |
137 |
|
|
138 |
< |
void BondOrderParameter::initalizeHistogram() { |
138 |
> |
void BondOrderParameter::initializeHistogram() { |
139 |
|
for (int bin = 0; bin < nBins_; bin++) { |
140 |
|
for (int l = 0; l <= lMax_; l++) { |
141 |
|
Q_histogram_[std::make_pair(bin,l)] = 0; |
157 |
|
RealType costheta; |
158 |
|
RealType phi; |
159 |
|
RealType r; |
161 |
– |
RealType dist; |
160 |
|
std::map<std::pair<int,int>,ComplexType> q; |
161 |
|
std::vector<RealType> q_l; |
162 |
|
std::vector<RealType> q2; |
169 |
|
std::vector<ComplexType> W_hat; |
170 |
|
int nBonds, Nbonds; |
171 |
|
SphericalHarmonic sphericalHarmonic; |
172 |
< |
int i, j; |
172 |
> |
int i; |
173 |
|
|
174 |
|
DumpReader reader(info_, dumpFilename_); |
175 |
|
int nFrames = reader.getNFrames(); |
184 |
|
Q.resize(lMax_+1); |
185 |
|
W.resize(lMax_+1); |
186 |
|
W_hat.resize(lMax_+1); |
187 |
+ |
Nbonds = 0; |
188 |
|
|
189 |
|
for (int istep = 0; istep < nFrames; istep += step_) { |
190 |
|
reader.readFrame(istep); |
229 |
|
if (atom->getGlobalIndex() != myIndex) { |
230 |
|
|
231 |
|
vec = sd->getPos() - atom->getPos(); |
232 |
< |
currentSnapshot_->wrapVector(vec); |
232 |
> |
|
233 |
> |
if (usePeriodicBoundaryConditions_) |
234 |
> |
currentSnapshot_->wrapVector(vec); |
235 |
|
|
236 |
|
// Calculate "bonds" and build Q_lm(r) where |
237 |
|
// Q_lm = Y_lm(theta(r),phi(r)) |
251 |
|
for(int m = -l; m <= l; m++){ |
252 |
|
sphericalHarmonic.setM(m); |
253 |
|
q[std::make_pair(l,m)] += sphericalHarmonic.getValueAt(costheta, phi); |
254 |
+ |
|
255 |
|
} |
256 |
|
} |
257 |
|
nBonds++; |
261 |
|
} |
262 |
|
|
263 |
|
|
262 |
– |
for (int l = 0; l <= lMax_; l++) { |
263 |
– |
q_l[l] = 0.0; |
264 |
– |
for(int m = -l; m <= l; m++) { |
265 |
– |
q_l[l] += norm(q[std::make_pair(l,m)]); |
266 |
– |
} |
267 |
– |
q_l[l] *= 4.0*NumericConstant::PI/(RealType)(2*l + 1); |
268 |
– |
q_l[l] = sqrt(q_l[l])/(RealType)nBonds; |
269 |
– |
} |
270 |
– |
|
271 |
– |
// Find second order invariant Q_l |
272 |
– |
|
264 |
|
for (int l = 0; l <= lMax_; l++) { |
265 |
|
q2[l] = 0.0; |
266 |
|
for (int m = -l; m <= l; m++){ |
267 |
+ |
q[std::make_pair(l,m)] /= (RealType)nBonds; |
268 |
+ |
|
269 |
|
q2[l] += norm(q[std::make_pair(l,m)]); |
270 |
|
} |
271 |
< |
q_l[l] = sqrt(q2[l] * 4.0 * NumericConstant::PI / |
279 |
< |
(RealType)(2*l + 1))/(RealType)nBonds; |
271 |
> |
q_l[l] = sqrt(q2[l] * 4.0 * NumericConstant::PI / (RealType)(2*l + 1)); |
272 |
|
} |
273 |
< |
|
273 |
> |
|
274 |
|
// Find Third Order Invariant W_l |
275 |
|
|
276 |
|
for (int l = 0; l <= lMax_; l++) { |
277 |
|
w[l] = 0.0; |
278 |
|
for (int m1 = -l; m1 <= l; m1++) { |
279 |
|
std::pair<int,int> lm = std::make_pair(l, m1); |
280 |
< |
for (int mmm = 0; mmm < (m2Max[lm] - m2Min[lm]); mmm++) { |
280 |
> |
for (int mmm = 0; mmm <= (m2Max[lm] - m2Min[lm]); mmm++) { |
281 |
|
int m2 = m2Min[lm] + mmm; |
282 |
|
int m3 = -m1-m2; |
283 |
|
w[l] += w3j[lm][mmm] * q[lm] * |
285 |
|
} |
286 |
|
} |
287 |
|
|
288 |
< |
w_hat[l] = w[l] / pow(q2[l], 1.5); |
288 |
> |
w_hat[l] = w[l] / pow(q2[l], RealType(1.5)); |
289 |
|
} |
290 |
|
|
291 |
|
collectHistogram(q_l, w_hat); |
293 |
|
Nbonds += nBonds; |
294 |
|
for (int l = 0; l <= lMax_; l++) { |
295 |
|
for (int m = -l; m <= l; m++) { |
296 |
< |
QBar[std::make_pair(l,m)] += q[std::make_pair(l,m)]; |
296 |
> |
QBar[std::make_pair(l,m)] += (RealType)nBonds*q[std::make_pair(l,m)]; |
297 |
|
} |
298 |
|
} |
299 |
|
} |
322 |
|
W[l] = 0.0; |
323 |
|
for (int m1 = -l; m1 <= l; m1++) { |
324 |
|
std::pair<int,int> lm = std::make_pair(l, m1); |
325 |
< |
for (int mmm = 0; mmm < (m2Max[lm] - m2Min[lm]); mmm++) { |
325 |
> |
for (int mmm = 0; mmm <= (m2Max[lm] - m2Min[lm]); mmm++) { |
326 |
|
int m2 = m2Min[lm] + mmm; |
327 |
|
int m3 = -m1-m2; |
328 |
|
W[l] += w3j[lm][mmm] * QBar[lm] * |
330 |
|
} |
331 |
|
} |
332 |
|
|
333 |
< |
W_hat[l] = W[l] / pow(Q2[l], 1.5); |
333 |
> |
W_hat[l] = W[l] / pow(Q2[l], RealType(1.5)); |
334 |
|
} |
335 |
|
|
336 |
|
writeOrderParameter(Q, W_hat); |
347 |
|
} else { |
348 |
|
sprintf( painCave.errMsg, |
349 |
|
"q_l value outside reasonable range\n"); |
350 |
< |
painCave.severity = OOPSE_ERROR; |
350 |
> |
painCave.severity = OPENMD_ERROR; |
351 |
|
painCave.isFatal = 1; |
352 |
|
simError(); |
353 |
|
} |
360 |
|
Wcount_[l]++; |
361 |
|
} else { |
362 |
|
sprintf( painCave.errMsg, |
363 |
< |
"Re[w_hat] value outside reasonable range\n"); |
364 |
< |
painCave.severity = OOPSE_ERROR; |
363 |
> |
"Re[w_hat] value (%lf) outside reasonable range\n", real(what[l])); |
364 |
> |
painCave.severity = OPENMD_ERROR; |
365 |
|
painCave.isFatal = 1; |
366 |
|
simError(); |
367 |
|
} |
388 |
|
RealType Qval = MinQ_ + (i + 0.5) * deltaQ_; |
389 |
|
osq << Qval; |
390 |
|
for (int l = 0; l <= lMax_; l++) { |
391 |
< |
osq << "\t" << (RealType)Q_histogram_[std::make_pair(i,l)] / |
392 |
< |
(RealType)Qcount_[l]; |
391 |
> |
|
392 |
> |
osq << "\t" << (RealType)Q_histogram_[std::make_pair(i,l)]/(RealType)Qcount_[l]/deltaQ_; |
393 |
|
} |
394 |
|
osq << "\n"; |
395 |
|
} |
410 |
|
osw << "# selection: (" << selectionScript_ << ")\n"; |
411 |
|
osw << "# \n"; |
412 |
|
for (int l = 0; l <= lMax_; l++) { |
413 |
< |
osw << "# <W_" << l << ">: " << real(What[l]) << "\n"; |
413 |
> |
osw << "# <W_" << l << ">: " << real(What[l]) << "\t" << imag(What[l]) << "\n"; |
414 |
|
} |
415 |
|
// Normalize by number of frames and write it out: |
416 |
|
for (int i = 0; i < nBins_; ++i) { |
417 |
|
RealType Wval = MinW_ + (i + 0.5) * deltaW_; |
418 |
|
osw << Wval; |
419 |
|
for (int l = 0; l <= lMax_; l++) { |
420 |
< |
osw << "\t" << (RealType)W_histogram_[std::make_pair(i,l)] / |
421 |
< |
(RealType)Wcount_[l]; |
420 |
> |
|
421 |
> |
osw << "\t" << (RealType)W_histogram_[std::make_pair(i,l)]/(RealType)Wcount_[l]/deltaW_; |
422 |
|
} |
423 |
|
osw << "\n"; |
424 |
|
} |