6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
|
* |
32 |
< |
* BondOrderParameter.cpp |
33 |
< |
* OOPSE-4 |
32 |
> |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
> |
* research, please cite the appropriate papers when you publish your |
34 |
> |
* work. Good starting points are: |
35 |
> |
* |
36 |
> |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
> |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
> |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
> |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
|
* |
41 |
|
* Created by J. Daniel Gezelter on 09/26/06. |
42 |
|
* @author J. Daniel Gezelter |
43 |
< |
* @version $Id: BondOrderParameter.cpp,v 1.18 2006-09-26 16:08:44 gezelter Exp $ |
43 |
> |
* @version $Id$ |
44 |
|
* |
45 |
|
*/ |
46 |
|
|
50 |
|
#include "primitives/Molecule.hpp" |
51 |
|
#include "utils/NumericConstant.hpp" |
52 |
|
|
53 |
< |
namespace oopse { |
53 |
> |
namespace OpenMD { |
54 |
|
|
55 |
|
BondOrderParameter::BondOrderParameter(SimInfo* info, |
56 |
|
const std::string& filename, |
80 |
|
// W_6 for icosahedral clusters is 11 / sqrt(4199) = 0.169754, so we'll |
81 |
|
// use values for MinW_ and MaxW_ that are slightly larger than this: |
82 |
|
|
83 |
< |
MinW_ = -0.25; |
84 |
< |
MaxW_ = 0.25; |
83 |
> |
MinW_ = -1.1; |
84 |
> |
MaxW_ = 1.1; |
85 |
|
deltaW_ = (MaxW_ - MinW_) / nbins; |
86 |
|
|
87 |
|
// Make arrays for Wigner3jm |
102 |
|
for (int ii = 0; ii < 2*l + 1; ii++){ |
103 |
|
THRCOF[ii] = 0.0; |
104 |
|
} |
105 |
< |
|
105 |
> |
|
106 |
|
// Get Wigner coefficients |
107 |
|
Wigner3jm(&lPass, &lPass, &lPass, |
108 |
|
&m1Pass, &m2m, &m2M, |
109 |
|
THRCOF, &mSize, &error); |
110 |
< |
|
110 |
> |
|
111 |
|
m2Min[lm] = (int)floor(m2m); |
112 |
|
m2Max[lm] = (int)floor(m2M); |
113 |
|
|
114 |
< |
for (int mmm = 0; mmm < (int)(m2M - m2m); mmm++) { |
114 |
> |
for (int mmm = 0; mmm <= (int)(m2M - m2m); mmm++) { |
115 |
|
w3j[lm].push_back(THRCOF[mmm]); |
116 |
|
} |
117 |
|
} |
183 |
|
Q.resize(lMax_+1); |
184 |
|
W.resize(lMax_+1); |
185 |
|
W_hat.resize(lMax_+1); |
186 |
+ |
Nbonds = 0; |
187 |
|
|
188 |
|
for (int istep = 0; istep < nFrames; istep += step_) { |
189 |
|
reader.readFrame(istep); |
228 |
|
if (atom->getGlobalIndex() != myIndex) { |
229 |
|
|
230 |
|
vec = sd->getPos() - atom->getPos(); |
231 |
< |
currentSnapshot_->wrapVector(vec); |
231 |
> |
|
232 |
> |
if (usePeriodicBoundaryConditions_) |
233 |
> |
currentSnapshot_->wrapVector(vec); |
234 |
|
|
235 |
|
// Calculate "bonds" and build Q_lm(r) where |
236 |
|
// Q_lm = Y_lm(theta(r),phi(r)) |
250 |
|
for(int m = -l; m <= l; m++){ |
251 |
|
sphericalHarmonic.setM(m); |
252 |
|
q[std::make_pair(l,m)] += sphericalHarmonic.getValueAt(costheta, phi); |
253 |
+ |
|
254 |
|
} |
255 |
|
} |
256 |
|
nBonds++; |
260 |
|
} |
261 |
|
|
262 |
|
|
262 |
– |
for (int l = 0; l <= lMax_; l++) { |
263 |
– |
q_l[l] = 0.0; |
264 |
– |
for(int m = -l; m <= l; m++) { |
265 |
– |
q_l[l] += norm(q[std::make_pair(l,m)]); |
266 |
– |
} |
267 |
– |
q_l[l] *= 4.0*NumericConstant::PI/(RealType)(2*l + 1); |
268 |
– |
q_l[l] = sqrt(q_l[l])/(RealType)nBonds; |
269 |
– |
} |
270 |
– |
|
271 |
– |
// Find second order invariant Q_l |
272 |
– |
|
263 |
|
for (int l = 0; l <= lMax_; l++) { |
264 |
|
q2[l] = 0.0; |
265 |
|
for (int m = -l; m <= l; m++){ |
266 |
+ |
q[std::make_pair(l,m)] /= (RealType)nBonds; |
267 |
+ |
|
268 |
|
q2[l] += norm(q[std::make_pair(l,m)]); |
269 |
|
} |
270 |
< |
q_l[l] = sqrt(q2[l] * 4.0 * NumericConstant::PI / |
279 |
< |
(RealType)(2*l + 1))/(RealType)nBonds; |
270 |
> |
q_l[l] = sqrt(q2[l] * 4.0 * NumericConstant::PI / (RealType)(2*l + 1)); |
271 |
|
} |
272 |
< |
|
272 |
> |
|
273 |
|
// Find Third Order Invariant W_l |
274 |
|
|
275 |
|
for (int l = 0; l <= lMax_; l++) { |
276 |
|
w[l] = 0.0; |
277 |
|
for (int m1 = -l; m1 <= l; m1++) { |
278 |
|
std::pair<int,int> lm = std::make_pair(l, m1); |
279 |
< |
for (int mmm = 0; mmm < (m2Max[lm] - m2Min[lm]); mmm++) { |
279 |
> |
for (int mmm = 0; mmm <= (m2Max[lm] - m2Min[lm]); mmm++) { |
280 |
|
int m2 = m2Min[lm] + mmm; |
281 |
|
int m3 = -m1-m2; |
282 |
|
w[l] += w3j[lm][mmm] * q[lm] * |
292 |
|
Nbonds += nBonds; |
293 |
|
for (int l = 0; l <= lMax_; l++) { |
294 |
|
for (int m = -l; m <= l; m++) { |
295 |
< |
QBar[std::make_pair(l,m)] += q[std::make_pair(l,m)]; |
295 |
> |
QBar[std::make_pair(l,m)] += (RealType)nBonds*q[std::make_pair(l,m)]; |
296 |
|
} |
297 |
|
} |
298 |
|
} |
321 |
|
W[l] = 0.0; |
322 |
|
for (int m1 = -l; m1 <= l; m1++) { |
323 |
|
std::pair<int,int> lm = std::make_pair(l, m1); |
324 |
< |
for (int mmm = 0; mmm < (m2Max[lm] - m2Min[lm]); mmm++) { |
324 |
> |
for (int mmm = 0; mmm <= (m2Max[lm] - m2Min[lm]); mmm++) { |
325 |
|
int m2 = m2Min[lm] + mmm; |
326 |
|
int m3 = -m1-m2; |
327 |
|
W[l] += w3j[lm][mmm] * QBar[lm] * |
346 |
|
} else { |
347 |
|
sprintf( painCave.errMsg, |
348 |
|
"q_l value outside reasonable range\n"); |
349 |
< |
painCave.severity = OOPSE_ERROR; |
349 |
> |
painCave.severity = OPENMD_ERROR; |
350 |
|
painCave.isFatal = 1; |
351 |
|
simError(); |
352 |
|
} |
359 |
|
Wcount_[l]++; |
360 |
|
} else { |
361 |
|
sprintf( painCave.errMsg, |
362 |
< |
"Re[w_hat] value outside reasonable range\n"); |
363 |
< |
painCave.severity = OOPSE_ERROR; |
362 |
> |
"Re[w_hat] value (%lf) outside reasonable range\n", real(what[l])); |
363 |
> |
painCave.severity = OPENMD_ERROR; |
364 |
|
painCave.isFatal = 1; |
365 |
|
simError(); |
366 |
|
} |
387 |
|
RealType Qval = MinQ_ + (i + 0.5) * deltaQ_; |
388 |
|
osq << Qval; |
389 |
|
for (int l = 0; l <= lMax_; l++) { |
390 |
< |
osq << "\t" << (RealType)Q_histogram_[std::make_pair(i,l)] / |
391 |
< |
(RealType)Qcount_[l]; |
390 |
> |
|
391 |
> |
osq << "\t" << (RealType)Q_histogram_[std::make_pair(i,l)]/(RealType)Qcount_[l]/deltaQ_; |
392 |
|
} |
393 |
|
osq << "\n"; |
394 |
|
} |
409 |
|
osw << "# selection: (" << selectionScript_ << ")\n"; |
410 |
|
osw << "# \n"; |
411 |
|
for (int l = 0; l <= lMax_; l++) { |
412 |
< |
osw << "# <W_" << l << ">: " << real(What[l]) << "\n"; |
412 |
> |
osw << "# <W_" << l << ">: " << real(What[l]) << "\t" << imag(What[l]) << "\n"; |
413 |
|
} |
414 |
|
// Normalize by number of frames and write it out: |
415 |
|
for (int i = 0; i < nBins_; ++i) { |
416 |
|
RealType Wval = MinW_ + (i + 0.5) * deltaW_; |
417 |
|
osw << Wval; |
418 |
|
for (int l = 0; l <= lMax_; l++) { |
419 |
< |
osw << "\t" << (RealType)W_histogram_[std::make_pair(i,l)] / |
420 |
< |
(RealType)Wcount_[l]; |
419 |
> |
|
420 |
> |
osw << "\t" << (RealType)W_histogram_[std::make_pair(i,l)]/(RealType)Wcount_[l]/deltaW_; |
421 |
|
} |
422 |
|
osw << "\n"; |
423 |
|
} |