| 1 | tim | 12 | #include <iostream> | 
| 2 |  |  |  | 
| 3 |  |  | #include <cstdlib> | 
| 4 |  |  | #include <cmath> | 
| 5 |  |  |  | 
| 6 |  |  | #include "utils/simError.h" | 
| 7 |  |  | #include "applications/simpleBuilder/MoLocator.hpp" | 
| 8 |  |  | #include "math/MatVec3.h" | 
| 9 |  |  |  | 
| 10 |  |  | MoLocator::MoLocator( MoleculeStamp* theStamp, ForceFields* theFF){ | 
| 11 |  |  |  | 
| 12 |  |  | myStamp = theStamp; | 
| 13 |  |  | myFF = theFF; | 
| 14 |  |  | nIntegrableObjects = myStamp->getNIntegrable(); | 
| 15 |  |  | calcRefCoords(); | 
| 16 |  |  | } | 
| 17 |  |  |  | 
| 18 |  |  | void MoLocator::placeMol( const Vector3d& offset, const Vector3d& ort, Molecule* mol){ | 
| 19 |  |  | double newCoor[3]; | 
| 20 |  |  | double curRefCoor[3]; | 
| 21 |  |  | double zeroVector[3]; | 
| 22 |  |  | vector<StuntDouble*> myIntegrableObjects; | 
| 23 |  |  | double rotMat[3][3]; | 
| 24 |  |  |  | 
| 25 |  |  | zeroVector[0] = 0.0; | 
| 26 |  |  | zeroVector[1] = 0.0; | 
| 27 |  |  | zeroVector[2] = 0.0; | 
| 28 |  |  |  | 
| 29 |  |  | latVec2RotMat(ort, rotMat); | 
| 30 |  |  |  | 
| 31 |  |  | myIntegrableObjects = mol->getIntegrableObjects(); | 
| 32 |  |  |  | 
| 33 |  |  | if(myIntegrableObjects.size() != nIntegrableObjects){ | 
| 34 |  |  | sprintf( painCave.errMsg, | 
| 35 |  |  | "MoLocator error.\n" | 
| 36 |  |  | "  The number of integrable objects of MoleculeStamp is not the same as  that of Molecule\n"); | 
| 37 |  |  | painCave.isFatal = 1; | 
| 38 |  |  | simError(); | 
| 39 |  |  |  | 
| 40 |  |  | } | 
| 41 |  |  |  | 
| 42 |  |  | for(int i=0; i<nIntegrableObjects; i++) { | 
| 43 |  |  |  | 
| 44 |  |  | //calculate the reference coordinate for integrable objects after rotation | 
| 45 |  |  | curRefCoor[0] = refCoords[i][0]; | 
| 46 |  |  | curRefCoor[1] = refCoords[i][1]; | 
| 47 |  |  | curRefCoor[2] = refCoords[i][2]; | 
| 48 |  |  |  | 
| 49 |  |  | matVecMul3(rotMat, curRefCoor, newCoor); | 
| 50 |  |  |  | 
| 51 |  |  | newCoor[0] +=  offset[0]; | 
| 52 |  |  | newCoor[1] +=  offset[1]; | 
| 53 |  |  | newCoor[2] +=  offset[2]; | 
| 54 |  |  |  | 
| 55 |  |  | myIntegrableObjects[i]->setPos( newCoor); | 
| 56 |  |  | myIntegrableObjects[i]->setVel(zeroVector); | 
| 57 |  |  |  | 
| 58 |  |  | if(myIntegrableObjects[i]->isDirectional()){ | 
| 59 |  |  | myIntegrableObjects[i]->setA(rotMat); | 
| 60 |  |  | myIntegrableObjects[i]->setJ(zeroVector); | 
| 61 |  |  | } | 
| 62 |  |  | } | 
| 63 |  |  |  | 
| 64 |  |  | } | 
| 65 |  |  |  | 
| 66 |  |  | void MoLocator::calcRefCoords( void ){ | 
| 67 |  |  | AtomStamp* currAtomStamp; | 
| 68 |  |  | int nAtoms; | 
| 69 |  |  | int nRigidBodies; | 
| 70 |  |  | vector<double> mass; | 
| 71 |  |  | Vector3d coor; | 
| 72 |  |  | Vector3d refMolCom; | 
| 73 |  |  | int nAtomsInRb; | 
| 74 |  |  | double totMassInRb; | 
| 75 |  |  | double currAtomMass; | 
| 76 |  |  | double molMass; | 
| 77 |  |  |  | 
| 78 |  |  | nAtoms= myStamp->getNAtoms(); | 
| 79 |  |  | nRigidBodies = myStamp->getNRigidBodies(); | 
| 80 |  |  |  | 
| 81 |  |  | for(size_t i=0; i<nAtoms; i++){ | 
| 82 |  |  |  | 
| 83 |  |  | currAtomStamp = myStamp->getAtom(i); | 
| 84 |  |  |  | 
| 85 |  |  | if( !currAtomStamp->havePosition() ){ | 
| 86 |  |  | sprintf( painCave.errMsg, | 
| 87 |  |  | "MoLocator error.\n" | 
| 88 |  |  | "  Component %s, atom %s does not have a position specified.\n" | 
| 89 |  |  | "  This means MoLocator cannot initalize it's position.\n", | 
| 90 |  |  | myStamp->getID(), | 
| 91 |  |  | currAtomStamp->getType() ); | 
| 92 |  |  |  | 
| 93 |  |  | painCave.isFatal = 1; | 
| 94 |  |  | simError(); | 
| 95 |  |  | } | 
| 96 |  |  |  | 
| 97 |  |  | //if atom belongs to rigidbody, just skip it | 
| 98 |  |  | if(myStamp->isAtomInRigidBody(i)) | 
| 99 |  |  | continue; | 
| 100 |  |  | //get mass and the reference coordinate | 
| 101 |  |  | else{ | 
| 102 |  |  | currAtomMass = myFF->getAtomTypeMass(currAtomStamp->getType()); | 
| 103 |  |  | mass.push_back(currAtomMass); | 
| 104 | tim | 188 | coor.x() = currAtomStamp->getPosX(); | 
| 105 |  |  | coor.y() = currAtomStamp->getPosY(); | 
| 106 |  |  | coor.z() = currAtomStamp->getPosZ(); | 
| 107 | tim | 12 | refCoords.push_back(coor); | 
| 108 |  |  |  | 
| 109 |  |  | } | 
| 110 |  |  | } | 
| 111 |  |  |  | 
| 112 |  |  | for(int i = 0; i < nRigidBodies; i++){ | 
| 113 | tim | 188 | coor.x() = 0; | 
| 114 |  |  | coor.y() = 0; | 
| 115 |  |  | coor.z() = 0; | 
| 116 | tim | 12 | totMassInRb = 0; | 
| 117 |  |  |  | 
| 118 |  |  | for(int j = 0; j < nAtomsInRb; j++){ | 
| 119 |  |  |  | 
| 120 |  |  | currAtomMass = myFF->getAtomTypeMass(currAtomStamp->getType()); | 
| 121 |  |  | totMassInRb +=  currAtomMass; | 
| 122 |  |  |  | 
| 123 | tim | 188 | coor.x() += currAtomStamp->getPosX() * currAtomMass; | 
| 124 |  |  | coor.y() += currAtomStamp->getPosY() * currAtomMass; | 
| 125 |  |  | coor.z() += currAtomStamp->getPosZ() * currAtomMass; | 
| 126 | tim | 12 | } | 
| 127 |  |  |  | 
| 128 |  |  | mass.push_back(totMassInRb); | 
| 129 |  |  | coor /= totMassInRb; | 
| 130 |  |  | refCoords.push_back(coor); | 
| 131 |  |  | } | 
| 132 |  |  |  | 
| 133 |  |  |  | 
| 134 |  |  | //calculate the reference center of mass | 
| 135 |  |  | molMass = 0; | 
| 136 | tim | 188 | refMolCom.x() = 0; | 
| 137 |  |  | refMolCom.y() = 0; | 
| 138 |  |  | refMolCom.z() = 0; | 
| 139 | tim | 12 |  | 
| 140 |  |  | for(int i = 0; i < nIntegrableObjects; i++){ | 
| 141 |  |  | refMolCom += refCoords[i] * mass[i]; | 
| 142 |  |  | molMass += mass[i]; | 
| 143 |  |  | } | 
| 144 |  |  |  | 
| 145 |  |  | refMolCom /= molMass; | 
| 146 |  |  |  | 
| 147 |  |  | //move the reference center of mass to (0,0,0) and adjust the reference coordinate | 
| 148 |  |  | //of the integrabel objects | 
| 149 |  |  | for(int i = 0; i < nIntegrableObjects; i++) | 
| 150 |  |  | refCoords[i] -= refMolCom; | 
| 151 |  |  | } | 
| 152 |  |  |  | 
| 153 |  |  |  | 
| 154 |  |  | void latVec2RotMat(const Vector3d& lv, double rotMat[3][3]){ | 
| 155 |  |  |  | 
| 156 |  |  | double theta, phi, psi; | 
| 157 |  |  |  | 
| 158 | tim | 188 | theta =acos(lv.z()); | 
| 159 |  |  | phi = atan2(lv.y(), lv.x()); | 
| 160 | tim | 12 | psi = 0; | 
| 161 |  |  |  | 
| 162 |  |  | rotMat[0][0] = (cos(phi) * cos(psi)) - (sin(phi) * cos(theta) * sin(psi)); | 
| 163 |  |  | rotMat[0][1] = (sin(phi) * cos(psi)) + (cos(phi) * cos(theta) * sin(psi)); | 
| 164 |  |  | rotMat[0][2] = sin(theta) * sin(psi); | 
| 165 |  |  |  | 
| 166 |  |  | rotMat[1][0] = -(cos(phi) * sin(psi)) - (sin(phi) * cos(theta) * cos(psi)); | 
| 167 |  |  | rotMat[1][1] = -(sin(phi) * sin(psi)) + (cos(phi) * cos(theta) * cos(psi)); | 
| 168 |  |  | rotMat[1][2] = sin(theta) * cos(psi); | 
| 169 |  |  |  | 
| 170 |  |  | rotMat[2][0] = sin(phi) * sin(theta); | 
| 171 |  |  | rotMat[2][1] = -cos(phi) * sin(theta); | 
| 172 |  |  | rotMat[2][2] = cos(theta); | 
| 173 |  |  | } | 
| 174 |  |  |  |