ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/applications/sequentialProps/ContactAngle2.cpp
Revision: 2072
Committed: Sat Mar 7 22:54:56 2015 UTC (10 years, 1 month ago) by gezelter
File size: 9468 byte(s)
Log Message:
One bug fix

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42
43 #include <algorithm>
44 #include <functional>
45 #include "applications/sequentialProps/ContactAngle2.hpp"
46 #include "utils/simError.h"
47 #include "io/DumpReader.hpp"
48 #include "primitives/Molecule.hpp"
49 #include "utils/NumericConstant.hpp"
50 #include "utils/PhysicalConstants.hpp"
51 #include "math/Eigenvalue.hpp"
52
53 namespace OpenMD {
54
55 ContactAngle2::ContactAngle2(SimInfo* info, const std::string& filename,
56 const std::string& sele, RealType solidZ,
57 RealType threshDens, RealType bufferLength,
58 int nrbins, int nzbins)
59 : SequentialAnalyzer(info, filename), solidZ_(solidZ),
60 threshDens_(threshDens), bufferLength_(bufferLength), nRBins_(nrbins),
61 nZBins_(nzbins), selectionScript_(sele), seleMan_(info),
62 evaluator_(info) {
63
64 setOutputName(getPrefix(filename) + ".ca2");
65
66 evaluator_.loadScriptString(sele);
67
68 if (!evaluator_.isDynamic()) {
69 seleMan_.setSelectionSet(evaluator_.evaluate());
70 }
71 }
72
73 void ContactAngle2::doFrame() {
74 StuntDouble* sd;
75 int i;
76
77 // set up the bins for density analysis
78
79 Mat3x3d hmat = info_->getSnapshotManager()->getCurrentSnapshot()->getHmat();
80 RealType len = std::min(hmat(0, 0), hmat(1, 1));
81 RealType zLen = hmat(2,2);
82
83 RealType dr = len / (RealType) nRBins_;
84 RealType dz = zLen / (RealType) nZBins_;
85
86 std::vector<std::vector<RealType> > histo;
87 histo.resize(nRBins_);
88 for (unsigned int i = 0; i < histo.size(); ++i){
89 histo[i].resize(nZBins_);
90 std::fill(histo[i].begin(), histo[i].end(), 0.0);
91 }
92
93 if (evaluator_.isDynamic()) {
94 seleMan_.setSelectionSet(evaluator_.evaluate());
95 }
96
97
98 RealType mtot = 0.0;
99 Vector3d com(V3Zero);
100 RealType mass;
101
102 for (sd = seleMan_.beginSelected(i); sd != NULL;
103 sd = seleMan_.nextSelected(i)) {
104 mass = sd->getMass();
105 mtot += mass;
106 com += sd->getPos() * mass;
107 }
108
109 com /= mtot;
110
111 // now that we have the centroid, we can make cylindrical density maps
112 Vector3d pos;
113 RealType r;
114 RealType z;
115
116 for (sd = seleMan_.beginSelected(i); sd != NULL;
117 sd = seleMan_.nextSelected(i)) {
118 pos = sd->getPos() - com;
119
120 // r goes from zero upwards
121 r = sqrt(pow(pos.x(), 2) + pow(pos.y(), 2));
122 // z is possibly symmetric around 0
123 z = pos.z();
124
125 int whichRBin = int(r / dr);
126 int whichZBin = int( (zLen/2.0 + z) / dz);
127
128 if ((whichRBin < nRBins_) && (whichZBin >= 0) && (whichZBin < nZBins_)) {
129 std::size_t i = static_cast<std::size_t>(whichRBin);
130 std::size_t j = static_cast<std::size_t>(whichZBin);
131 histo[i][j] += sd->getMass();
132 }
133
134 }
135
136 for(unsigned int i = 0 ; i < histo.size(); ++i){
137
138 RealType rL = i * dr;
139 RealType rU = rL + dr;
140 RealType volSlice = NumericConstant::PI * dz * (( rU*rU ) - ( rL*rL ));
141
142 for (unsigned int j = 0; j < histo[i].size(); ++j) {
143 histo[i][j] *= PhysicalConstants::densityConvert / volSlice;
144 }
145 }
146
147 std::vector<Vector<RealType, 2> > points;
148 points.clear();
149
150 for (unsigned int j = 0; j < nZBins_; ++j) {
151
152 // The z coordinates were measured relative to the selection
153 // center of mass. However, we're interested in the elevation
154 // above the solid surface. Also, the binning was done around
155 // zero with enough bins to cover the zLength of the box:
156
157 RealType thez = com.z() - solidZ_ - zLen/2.0 + dz * (j + 0.5);
158 bool aboveThresh = false;
159 bool foundThresh = false;
160 int rloc = 0;
161
162 for (std::size_t i = 0; i < nRBins_; ++i) {
163
164 if (histo[i][j] >= threshDens_) aboveThresh = true;
165
166 if (aboveThresh && (histo[i][j] <= threshDens_)) {
167 rloc = i;
168 foundThresh = true;
169 aboveThresh = false;
170 }
171
172 }
173 if (foundThresh) {
174 Vector<RealType,2> point;
175 point[0] = dr*(rloc+0.5);
176 point[1] = thez;
177
178 if (thez > bufferLength_) {
179 points.push_back( point );
180 }
181 }
182 }
183
184 int numPoints = points.size();
185
186 // Compute the average of the data points.
187 Vector<RealType, 2> average = points[0];
188 int i0;
189 for (i0 = 1; i0 < numPoints; ++i0) {
190 average += points[i0];
191 }
192 RealType invNumPoints = ((RealType)1)/(RealType)numPoints;
193 average *= invNumPoints;
194
195 DynamicRectMatrix<RealType> mat(4, 4);
196 int row, col;
197 for (row = 0; row < 4; ++row) {
198 for (col = 0; col < 4; ++col){
199 mat(row,col) = 0.0;
200 }
201 }
202 for (int i = 0; i < numPoints; ++i) {
203 RealType x = points[i][0];
204 RealType y = points[i][1];
205 RealType x2 = x*x;
206 RealType y2 = y*y;
207 RealType xy = x*y;
208 RealType r2 = x2+y2;
209 RealType xr2 = x*r2;
210 RealType yr2 = y*r2;
211 RealType r4 = r2*r2;
212
213 mat(0,1) += x;
214 mat(0,2) += y;
215 mat(0,3) += r2;
216 mat(1,1) += x2;
217 mat(1,2) += xy;
218 mat(1,3) += xr2;
219 mat(2,2) += y2;
220 mat(2,3) += yr2;
221 mat(3,3) += r4;
222 }
223 mat(0,0) = (RealType)numPoints;
224
225 for (row = 0; row < 4; ++row) {
226 for (col = 0; col < row; ++col) {
227 mat(row,col) = mat(col,row);
228 }
229 }
230
231 for (row = 0; row < 4; ++row) {
232 for (col = 0; col < 4; ++col) {
233 mat(row,col) *= invNumPoints;
234 }
235 }
236
237 JAMA::Eigenvalue<RealType> eigensystem(mat);
238 DynamicRectMatrix<RealType> evects(4, 4);
239 DynamicVector<RealType> evals(4);
240
241 eigensystem.getRealEigenvalues(evals);
242 eigensystem.getV(evects);
243
244 DynamicVector<RealType> evector = evects.getColumn(0);
245 RealType inv = ((RealType)1)/evector[3]; // beware zero divide
246 RealType coeff[3];
247 for (row = 0; row < 3; ++row) {
248 coeff[row] = inv*evector[row];
249 }
250
251 Vector<RealType, 2> center;
252
253 center[0] = -((RealType)0.5)*coeff[1];
254 center[1] = -((RealType)0.5)*coeff[2];
255 RealType radius = sqrt(fabs(center[0]*center[0] + center[1]*center[1]
256 - coeff[0]));
257
258 int i1;
259 for (i1 = 0; i1 < 100; ++i1) {
260 // Update the iterates.
261 Vector<RealType, 2> current = center;
262
263 // Compute average L, dL/da, dL/db.
264 RealType lenAverage = (RealType)0;
265 Vector<RealType, 2> derLenAverage = Vector<RealType, 2>(0.0);
266 for (i0 = 0; i0 < numPoints; ++i0) {
267 Vector<RealType, 2> diff = points[i0] - center;
268 RealType length = diff.length();
269 if (length > 1e-6) {
270 lenAverage += length;
271 RealType invLength = ((RealType)1)/length;
272 derLenAverage -= invLength*diff;
273 }
274 }
275 lenAverage *= invNumPoints;
276 derLenAverage *= invNumPoints;
277
278 center = average + lenAverage*derLenAverage;
279 radius = lenAverage;
280
281 Vector<RealType, 2> diff = center - current;
282 if (fabs(diff[0]) <= 1e-6 && fabs(diff[1]) <= 1e-6) {
283 break;
284 }
285 }
286
287 RealType zCen = center[1];
288 RealType rDrop = radius;
289 RealType ca;
290
291 if (fabs(zCen) > rDrop) {
292 ca = 180.0;
293 } else {
294 ca = 90.0 + asin(zCen/rDrop)*(180.0/M_PI);
295 }
296
297 values_.push_back( ca );
298
299 }
300 }
301
302

Properties

Name Value
svn:executable *