ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/applications/sequentialProps/ContactAngle2.cpp
Revision: 2038
Committed: Tue Nov 4 22:02:45 2014 UTC (10 years, 5 months ago) by gezelter
File size: 9298 byte(s)
Log Message:
Fixed a arcsin sign bug

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42
43 #include <algorithm>
44 #include <functional>
45 #include "applications/sequentialProps/ContactAngle2.hpp"
46 #include "utils/simError.h"
47 #include "io/DumpReader.hpp"
48 #include "primitives/Molecule.hpp"
49 #include "utils/NumericConstant.hpp"
50 #include "utils/PhysicalConstants.hpp"
51 #include "math/Eigenvalue.hpp"
52
53 namespace OpenMD {
54
55 ContactAngle2::ContactAngle2(SimInfo* info, const std::string& filename,
56 const std::string& sele, RealType solidZ,
57 RealType threshDens, int nrbins, int nzbins)
58 : SequentialAnalyzer(info, filename), selectionScript_(sele),
59 evaluator_(info), seleMan_(info), solidZ_(solidZ),
60 threshDens_(threshDens), nRBins_(nrbins), nZBins_(nzbins) {
61
62 setOutputName(getPrefix(filename) + ".ca2");
63
64 evaluator_.loadScriptString(sele);
65
66 if (!evaluator_.isDynamic()) {
67 seleMan_.setSelectionSet(evaluator_.evaluate());
68 }
69 }
70
71 void ContactAngle2::doFrame() {
72 StuntDouble* sd;
73 int i;
74
75 // set up the bins for density analysis
76
77 Mat3x3d hmat = info_->getSnapshotManager()->getCurrentSnapshot()->getHmat();
78 RealType len = std::min(hmat(0, 0), hmat(1, 1));
79 RealType zLen = hmat(2,2);
80
81 RealType dr = len / (RealType) nRBins_;
82 RealType dz = zLen / (RealType) nZBins_;
83
84 std::vector<std::vector<RealType> > histo;
85 histo.resize(nRBins_);
86 for (unsigned int i = 0; i < histo.size(); ++i){
87 histo[i].resize(nZBins_);
88 std::fill(histo[i].begin(), histo[i].end(), 0.0);
89 }
90
91 if (evaluator_.isDynamic()) {
92 seleMan_.setSelectionSet(evaluator_.evaluate());
93 }
94
95
96 RealType mtot = 0.0;
97 Vector3d com(V3Zero);
98 RealType mass;
99
100 for (sd = seleMan_.beginSelected(i); sd != NULL;
101 sd = seleMan_.nextSelected(i)) {
102 mass = sd->getMass();
103 mtot += mass;
104 com += sd->getPos() * mass;
105 }
106
107 com /= mtot;
108
109 // now that we have the centroid, we can make cylindrical density maps
110 Vector3d pos;
111 RealType r;
112 RealType z;
113
114 for (sd = seleMan_.beginSelected(i); sd != NULL;
115 sd = seleMan_.nextSelected(i)) {
116 pos = sd->getPos() - com;
117
118 // r goes from zero upwards
119 r = sqrt(pow(pos.x(), 2) + pow(pos.y(), 2));
120 // z is possibly symmetric around 0
121 z = pos.z();
122
123 int whichRBin = int(r / dr);
124 int whichZBin = int( (zLen/2.0 + z) / dz);
125
126 if ((whichRBin < nRBins_) && (whichZBin >= 0) && (whichZBin < nZBins_))
127 histo[whichRBin][whichZBin] += sd->getMass();
128
129 }
130
131 for(unsigned int i = 0 ; i < histo.size(); ++i){
132
133 RealType rL = i * dr;
134 RealType rU = rL + dr;
135 RealType volSlice = NumericConstant::PI * dz * (( rU*rU ) - ( rL*rL ));
136
137 for (unsigned int j = 0; j < histo[i].size(); ++j) {
138 histo[i][j] *= PhysicalConstants::densityConvert / volSlice;
139 }
140 }
141
142 std::vector<Vector<RealType, 2> > points;
143 points.clear();
144
145 for (unsigned int j = 0; j < nZBins_; ++j) {
146
147 // The z coordinates were measured relative to the selection
148 // center of mass. However, we're interested in the elevation
149 // above the solid surface. Also, the binning was done around
150 // zero with enough bins to cover the zLength of the box:
151
152 RealType thez = com.z() - solidZ_ - zLen/2.0 + dz * (j + 0.5);
153 bool aboveThresh = false;
154 bool foundThresh = false;
155 int rloc = 0;
156
157 for (unsigned int i = 0; i < nRBins_; ++i) {
158 RealType ther = dr * (i + 0.5);
159 if (histo[i][j] >= threshDens_) aboveThresh = true;
160
161 if (aboveThresh && (histo[i][j] <= threshDens_)) {
162 rloc = i;
163 foundThresh = true;
164 aboveThresh = false;
165 }
166
167 }
168 if (foundThresh) {
169 Vector<RealType,2> point;
170 point[0] = dr*(rloc+0.5);
171 point[1] = thez;
172 points.push_back( point );
173 }
174 }
175
176 int numPoints = points.size();
177
178 // Compute the average of the data points.
179 Vector<RealType, 2> average = points[0];
180 int i0;
181 for (i0 = 1; i0 < numPoints; ++i0) {
182 average += points[i0];
183 }
184 RealType invNumPoints = ((RealType)1)/(RealType)numPoints;
185 average *= invNumPoints;
186
187 DynamicRectMatrix<RealType> mat(4, 4);
188 int row, col;
189 for (row = 0; row < 4; ++row) {
190 for (col = 0; col < 4; ++col){
191 mat(row,col) = 0.0;
192 }
193 }
194 for (int i = 0; i < numPoints; ++i) {
195 RealType x = points[i][0];
196 RealType y = points[i][1];
197 RealType x2 = x*x;
198 RealType y2 = y*y;
199 RealType xy = x*y;
200 RealType r2 = x2+y2;
201 RealType xr2 = x*r2;
202 RealType yr2 = y*r2;
203 RealType r4 = r2*r2;
204
205 mat(0,1) += x;
206 mat(0,2) += y;
207 mat(0,3) += r2;
208 mat(1,1) += x2;
209 mat(1,2) += xy;
210 mat(1,3) += xr2;
211 mat(2,2) += y2;
212 mat(2,3) += yr2;
213 mat(3,3) += r4;
214 }
215 mat(0,0) = (RealType)numPoints;
216
217 for (row = 0; row < 4; ++row) {
218 for (col = 0; col < row; ++col) {
219 mat(row,col) = mat(col,row);
220 }
221 }
222
223 for (row = 0; row < 4; ++row) {
224 for (col = 0; col < 4; ++col) {
225 mat(row,col) *= invNumPoints;
226 }
227 }
228
229 JAMA::Eigenvalue<RealType> eigensystem(mat);
230 DynamicRectMatrix<RealType> evects(4, 4);
231 DynamicVector<RealType> evals(4);
232
233 eigensystem.getRealEigenvalues(evals);
234 eigensystem.getV(evects);
235
236 DynamicVector<RealType> evector = evects.getColumn(0);
237 RealType inv = ((RealType)1)/evector[3]; // beware zero divide
238 RealType coeff[3];
239 for (row = 0; row < 3; ++row) {
240 coeff[row] = inv*evector[row];
241 }
242
243 Vector<RealType, 2> center;
244
245 center[0] = -((RealType)0.5)*coeff[1];
246 center[1] = -((RealType)0.5)*coeff[2];
247 RealType radius = sqrt(fabs(center[0]*center[0] + center[1]*center[1]
248 - coeff[0]));
249 RealType ev0 = fabs(evals[0]);
250
251 int i1;
252 for (i1 = 0; i1 < 100; ++i1) {
253 // Update the iterates.
254 Vector<RealType, 2> current = center;
255
256 // Compute average L, dL/da, dL/db.
257 RealType lenAverage = (RealType)0;
258 Vector<RealType, 2> derLenAverage = Vector<RealType, 2>(0.0);
259 for (i0 = 0; i0 < numPoints; ++i0) {
260 Vector<RealType, 2> diff = points[i0] - center;
261 RealType length = diff.length();
262 if (length > 1e-6) {
263 lenAverage += length;
264 RealType invLength = ((RealType)1)/length;
265 derLenAverage -= invLength*diff;
266 }
267 }
268 lenAverage *= invNumPoints;
269 derLenAverage *= invNumPoints;
270
271 center = average + lenAverage*derLenAverage;
272 radius = lenAverage;
273
274 Vector<RealType, 2> diff = center - current;
275 if (fabs(diff[0]) <= 1e-6 && fabs(diff[1]) <= 1e-6) {
276 break;
277 }
278 }
279
280 RealType zCen = center[1];
281 RealType rDrop = radius;
282 RealType ca;
283
284 if (fabs(zCen) > rDrop) {
285 ca = 180.0;
286 } else {
287 ca = 90.0 + asin(zCen/rDrop)*(180.0/M_PI);
288 }
289
290 values_.push_back( ca );
291
292 }
293 }
294
295

Properties

Name Value
svn:executable *