1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#include <algorithm> |
44 |
#include <functional> |
45 |
#include "applications/sequentialProps/ContactAngle2.hpp" |
46 |
#include "utils/simError.h" |
47 |
#include "io/DumpReader.hpp" |
48 |
#include "primitives/Molecule.hpp" |
49 |
#include "utils/NumericConstant.hpp" |
50 |
#include "utils/PhysicalConstants.hpp" |
51 |
#include "math/Polynomial.hpp" |
52 |
|
53 |
namespace OpenMD { |
54 |
|
55 |
ContactAngle2::ContactAngle2(SimInfo* info, const std::string& filename, |
56 |
const std::string& sele, RealType solidZ, |
57 |
RealType threshDens, int nrbins, int nzbins) |
58 |
: SequentialAnalyzer(info, filename), selectionScript_(sele), |
59 |
evaluator_(info), seleMan_(info), solidZ_(solidZ), |
60 |
threshDens_(threshDens), nRBins_(nrbins), nZBins_(nzbins) { |
61 |
|
62 |
setOutputName(getPrefix(filename) + ".ca2"); |
63 |
|
64 |
evaluator_.loadScriptString(sele); |
65 |
|
66 |
if (!evaluator_.isDynamic()) { |
67 |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
68 |
} |
69 |
} |
70 |
|
71 |
void ContactAngle2::doFrame() { |
72 |
StuntDouble* sd; |
73 |
int i; |
74 |
|
75 |
// set up the bins for density analysis |
76 |
|
77 |
Mat3x3d hmat = info_->getSnapshotManager()->getCurrentSnapshot()->getHmat(); |
78 |
RealType len = std::min(hmat(0, 0), hmat(1, 1)); |
79 |
RealType zLen = hmat(2,2); |
80 |
RealType dr = len / (RealType) nRBins_; |
81 |
RealType dz = zLen / (RealType) nZBins_; |
82 |
|
83 |
std::vector<std::vector<RealType> > histo; |
84 |
histo.resize(nRBins_); |
85 |
for (int i = 0 ; i < nRBins_; ++i) { |
86 |
histo[i].resize(nZBins_); |
87 |
} |
88 |
for (unsigned int i = 0; i < histo.size(); ++i){ |
89 |
std::fill(histo[i].begin(), histo[i].end(), 0.0); |
90 |
} |
91 |
|
92 |
if (evaluator_.isDynamic()) { |
93 |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
94 |
} |
95 |
|
96 |
|
97 |
RealType mtot = 0.0; |
98 |
Vector3d com(V3Zero); |
99 |
RealType mass; |
100 |
|
101 |
for (sd = seleMan_.beginSelected(i); sd != NULL; |
102 |
sd = seleMan_.nextSelected(i)) { |
103 |
mass = sd->getMass(); |
104 |
mtot += mass; |
105 |
com += sd->getPos() * mass; |
106 |
} |
107 |
|
108 |
com /= mtot; |
109 |
|
110 |
// now that we have the centroid, we can make cylindrical density maps |
111 |
Vector3d pos; |
112 |
RealType r; |
113 |
RealType z; |
114 |
|
115 |
for (sd = seleMan_.beginSelected(i); sd != NULL; |
116 |
sd = seleMan_.nextSelected(i)) { |
117 |
pos = sd->getPos() - com; |
118 |
|
119 |
r = sqrt(pow(pos.x(), 2) + pow(pos.y(), 2)); |
120 |
z = pos.z() - solidZ_; |
121 |
|
122 |
int whichRBin = int(r / dr); |
123 |
int whichZBin = int(z/ dz); |
124 |
|
125 |
if ((r <= len) && (z <= zLen)) |
126 |
histo[whichRBin][whichZBin] += sd->getMass(); |
127 |
|
128 |
} |
129 |
|
130 |
for(unsigned int i = 0 ; i < histo.size(); ++i){ |
131 |
|
132 |
RealType rL = i * dr; |
133 |
RealType rU = rL + dr; |
134 |
RealType volSlice = NumericConstant::PI * dz * (( rU*rU ) - ( rL*rL )); |
135 |
|
136 |
for (unsigned int j = 0; j < histo[i].size(); ++j){ |
137 |
histo[i][j] *= PhysicalConstants::densityConvert / volSlice; |
138 |
} |
139 |
} |
140 |
|
141 |
for (unsigned int j = 0; j < nZBins_; ++j) { |
142 |
RealType thez = dz * (j + 0.5); |
143 |
bool aboveThresh = false; |
144 |
for (unsigned int i = 0; i < nRBins_; ++i) { |
145 |
RealType ther = dr * (i + 0.5); |
146 |
if (histo[i][j] >= threshDens_) aboveThresh = true; |
147 |
|
148 |
if (aboveThresh && (histo[i][j] <= threshDens_)) { |
149 |
cerr << thez << "\t" << ther << "\n"; |
150 |
break; |
151 |
} |
152 |
} |
153 |
} |
154 |
|
155 |
// values_.push_back( acos(maxct)*(180.0/M_PI) ); |
156 |
|
157 |
} |
158 |
} |
159 |
|
160 |
|