ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/applications/sequentialProps/ContactAngle2.cpp
Revision: 2081
Committed: Tue Mar 17 18:22:18 2015 UTC (10 years, 1 month ago) by gezelter
File size: 9584 byte(s)
Log Message:
ContactAngle2 now requires specification of the location of the 
droplet centroid in X&Y axes.

File Contents

# User Rev Content
1 gezelter 2035 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Redistributions of source code must retain the above copyright
10     * notice, this list of conditions and the following disclaimer.
11     *
12     * 2. Redistributions in binary form must reproduce the above copyright
13     * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31     *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39     * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40     * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41     */
42    
43     #include <algorithm>
44     #include <functional>
45     #include "applications/sequentialProps/ContactAngle2.hpp"
46     #include "utils/simError.h"
47     #include "io/DumpReader.hpp"
48     #include "primitives/Molecule.hpp"
49     #include "utils/NumericConstant.hpp"
50     #include "utils/PhysicalConstants.hpp"
51 gezelter 2037 #include "math/Eigenvalue.hpp"
52 gezelter 2035
53     namespace OpenMD {
54 gezelter 2071
55 gezelter 2035 ContactAngle2::ContactAngle2(SimInfo* info, const std::string& filename,
56     const std::string& sele, RealType solidZ,
57 gezelter 2081 RealType centroidX, RealType centroidY,
58 gezelter 2039 RealType threshDens, RealType bufferLength,
59     int nrbins, int nzbins)
60 gezelter 2081 : SequentialAnalyzer(info, filename), solidZ_(solidZ),
61     centroidX_(centroidX), centroidY_(centroidY),
62     threshDens_(threshDens), bufferLength_(bufferLength), nRBins_(nrbins),
63     nZBins_(nzbins), selectionScript_(sele), seleMan_(info),
64     evaluator_(info) {
65 gezelter 2071
66 gezelter 2035 setOutputName(getPrefix(filename) + ".ca2");
67    
68     evaluator_.loadScriptString(sele);
69    
70     if (!evaluator_.isDynamic()) {
71     seleMan_.setSelectionSet(evaluator_.evaluate());
72     }
73     }
74    
75     void ContactAngle2::doFrame() {
76     StuntDouble* sd;
77     int i;
78    
79     // set up the bins for density analysis
80    
81     Mat3x3d hmat = info_->getSnapshotManager()->getCurrentSnapshot()->getHmat();
82     RealType len = std::min(hmat(0, 0), hmat(1, 1));
83     RealType zLen = hmat(2,2);
84 gezelter 2037
85 gezelter 2035 RealType dr = len / (RealType) nRBins_;
86     RealType dz = zLen / (RealType) nZBins_;
87    
88     std::vector<std::vector<RealType> > histo;
89     histo.resize(nRBins_);
90 gezelter 2037 for (unsigned int i = 0; i < histo.size(); ++i){
91 gezelter 2035 histo[i].resize(nZBins_);
92     std::fill(histo[i].begin(), histo[i].end(), 0.0);
93     }
94    
95     if (evaluator_.isDynamic()) {
96     seleMan_.setSelectionSet(evaluator_.evaluate());
97     }
98    
99    
100 gezelter 2081 // RealType mtot = 0.0;
101     // Vector3d com(V3Zero);
102     // RealType mass;
103 gezelter 2035
104 gezelter 2081 // for (sd = seleMan_.beginSelected(i); sd != NULL;
105     // sd = seleMan_.nextSelected(i)) {
106     // mass = sd->getMass();
107     // mtot += mass;
108     // com += sd->getPos() * mass;
109     // }
110 gezelter 2035
111 gezelter 2081 // com /= mtot;
112 gezelter 2035
113 gezelter 2081 Vector3d com(centroidX_, centroidY_, solidZ_);
114    
115 gezelter 2035 // now that we have the centroid, we can make cylindrical density maps
116     Vector3d pos;
117     RealType r;
118     RealType z;
119    
120     for (sd = seleMan_.beginSelected(i); sd != NULL;
121     sd = seleMan_.nextSelected(i)) {
122     pos = sd->getPos() - com;
123 gezelter 2037
124     // r goes from zero upwards
125 gezelter 2035 r = sqrt(pow(pos.x(), 2) + pow(pos.y(), 2));
126 gezelter 2037 // z is possibly symmetric around 0
127     z = pos.z();
128    
129 gezelter 2072 int whichRBin = int(r / dr);
130     int whichZBin = int( (zLen/2.0 + z) / dz);
131 gezelter 2035
132 gezelter 2073 if ((whichRBin < int(nRBins_)) && (whichZBin >= 0) && (whichZBin < int(nZBins_))) {
133     histo[whichRBin][whichZBin] += sd->getMass();
134 gezelter 2072 }
135 gezelter 2035
136     }
137    
138     for(unsigned int i = 0 ; i < histo.size(); ++i){
139    
140     RealType rL = i * dr;
141     RealType rU = rL + dr;
142     RealType volSlice = NumericConstant::PI * dz * (( rU*rU ) - ( rL*rL ));
143    
144 gezelter 2037 for (unsigned int j = 0; j < histo[i].size(); ++j) {
145 gezelter 2035 histo[i][j] *= PhysicalConstants::densityConvert / volSlice;
146     }
147     }
148    
149 gezelter 2037 std::vector<Vector<RealType, 2> > points;
150     points.clear();
151    
152 gezelter 2036 for (unsigned int j = 0; j < nZBins_; ++j) {
153 gezelter 2037
154     // The z coordinates were measured relative to the selection
155     // center of mass. However, we're interested in the elevation
156     // above the solid surface. Also, the binning was done around
157     // zero with enough bins to cover the zLength of the box:
158    
159     RealType thez = com.z() - solidZ_ - zLen/2.0 + dz * (j + 0.5);
160 gezelter 2036 bool aboveThresh = false;
161 gezelter 2037 bool foundThresh = false;
162     int rloc = 0;
163    
164 gezelter 2071 for (std::size_t i = 0; i < nRBins_; ++i) {
165    
166 gezelter 2036 if (histo[i][j] >= threshDens_) aboveThresh = true;
167    
168     if (aboveThresh && (histo[i][j] <= threshDens_)) {
169 gezelter 2037 rloc = i;
170     foundThresh = true;
171     aboveThresh = false;
172 gezelter 2035 }
173 gezelter 2037
174 gezelter 2035 }
175 gezelter 2037 if (foundThresh) {
176     Vector<RealType,2> point;
177     point[0] = dr*(rloc+0.5);
178     point[1] = thez;
179 gezelter 2039
180     if (thez > bufferLength_) {
181     points.push_back( point );
182     }
183 gezelter 2037 }
184 gezelter 2035 }
185 gezelter 2037
186     int numPoints = points.size();
187    
188     // Compute the average of the data points.
189     Vector<RealType, 2> average = points[0];
190     int i0;
191     for (i0 = 1; i0 < numPoints; ++i0) {
192     average += points[i0];
193     }
194     RealType invNumPoints = ((RealType)1)/(RealType)numPoints;
195     average *= invNumPoints;
196 gezelter 2036
197 gezelter 2037 DynamicRectMatrix<RealType> mat(4, 4);
198     int row, col;
199     for (row = 0; row < 4; ++row) {
200     for (col = 0; col < 4; ++col){
201     mat(row,col) = 0.0;
202     }
203     }
204     for (int i = 0; i < numPoints; ++i) {
205     RealType x = points[i][0];
206     RealType y = points[i][1];
207     RealType x2 = x*x;
208     RealType y2 = y*y;
209     RealType xy = x*y;
210     RealType r2 = x2+y2;
211     RealType xr2 = x*r2;
212     RealType yr2 = y*r2;
213     RealType r4 = r2*r2;
214    
215     mat(0,1) += x;
216     mat(0,2) += y;
217     mat(0,3) += r2;
218     mat(1,1) += x2;
219     mat(1,2) += xy;
220     mat(1,3) += xr2;
221     mat(2,2) += y2;
222     mat(2,3) += yr2;
223     mat(3,3) += r4;
224     }
225     mat(0,0) = (RealType)numPoints;
226    
227     for (row = 0; row < 4; ++row) {
228     for (col = 0; col < row; ++col) {
229     mat(row,col) = mat(col,row);
230     }
231     }
232    
233     for (row = 0; row < 4; ++row) {
234     for (col = 0; col < 4; ++col) {
235     mat(row,col) *= invNumPoints;
236     }
237     }
238    
239     JAMA::Eigenvalue<RealType> eigensystem(mat);
240     DynamicRectMatrix<RealType> evects(4, 4);
241     DynamicVector<RealType> evals(4);
242    
243     eigensystem.getRealEigenvalues(evals);
244     eigensystem.getV(evects);
245    
246     DynamicVector<RealType> evector = evects.getColumn(0);
247     RealType inv = ((RealType)1)/evector[3]; // beware zero divide
248     RealType coeff[3];
249     for (row = 0; row < 3; ++row) {
250     coeff[row] = inv*evector[row];
251     }
252    
253     Vector<RealType, 2> center;
254 gezelter 2035
255 gezelter 2037 center[0] = -((RealType)0.5)*coeff[1];
256     center[1] = -((RealType)0.5)*coeff[2];
257     RealType radius = sqrt(fabs(center[0]*center[0] + center[1]*center[1]
258     - coeff[0]));
259    
260     int i1;
261     for (i1 = 0; i1 < 100; ++i1) {
262     // Update the iterates.
263     Vector<RealType, 2> current = center;
264    
265     // Compute average L, dL/da, dL/db.
266     RealType lenAverage = (RealType)0;
267     Vector<RealType, 2> derLenAverage = Vector<RealType, 2>(0.0);
268     for (i0 = 0; i0 < numPoints; ++i0) {
269     Vector<RealType, 2> diff = points[i0] - center;
270     RealType length = diff.length();
271     if (length > 1e-6) {
272     lenAverage += length;
273     RealType invLength = ((RealType)1)/length;
274     derLenAverage -= invLength*diff;
275     }
276     }
277     lenAverage *= invNumPoints;
278     derLenAverage *= invNumPoints;
279    
280     center = average + lenAverage*derLenAverage;
281     radius = lenAverage;
282    
283     Vector<RealType, 2> diff = center - current;
284     if (fabs(diff[0]) <= 1e-6 && fabs(diff[1]) <= 1e-6) {
285     break;
286     }
287     }
288    
289     RealType zCen = center[1];
290     RealType rDrop = radius;
291     RealType ca;
292    
293     if (fabs(zCen) > rDrop) {
294     ca = 180.0;
295     } else {
296 gezelter 2038 ca = 90.0 + asin(zCen/rDrop)*(180.0/M_PI);
297 gezelter 2037 }
298    
299     values_.push_back( ca );
300    
301 gezelter 2035 }
302     }
303    
304    

Properties

Name Value
svn:executable *