ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/applications/sequentialProps/ContactAngle2.cpp
Revision: 2073
Committed: Sat Mar 7 23:52:07 2015 UTC (10 years, 1 month ago) by gezelter
File size: 9372 byte(s)
Log Message:
added a skipToken function to StringTokenizer, and used this to 
remove some silly warnings on compilation. 

File Contents

# User Rev Content
1 gezelter 2035 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Redistributions of source code must retain the above copyright
10     * notice, this list of conditions and the following disclaimer.
11     *
12     * 2. Redistributions in binary form must reproduce the above copyright
13     * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31     *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39     * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40     * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41     */
42    
43     #include <algorithm>
44     #include <functional>
45     #include "applications/sequentialProps/ContactAngle2.hpp"
46     #include "utils/simError.h"
47     #include "io/DumpReader.hpp"
48     #include "primitives/Molecule.hpp"
49     #include "utils/NumericConstant.hpp"
50     #include "utils/PhysicalConstants.hpp"
51 gezelter 2037 #include "math/Eigenvalue.hpp"
52 gezelter 2035
53     namespace OpenMD {
54 gezelter 2071
55 gezelter 2035 ContactAngle2::ContactAngle2(SimInfo* info, const std::string& filename,
56     const std::string& sele, RealType solidZ,
57 gezelter 2039 RealType threshDens, RealType bufferLength,
58     int nrbins, int nzbins)
59 gezelter 2071 : SequentialAnalyzer(info, filename), solidZ_(solidZ),
60     threshDens_(threshDens), bufferLength_(bufferLength), nRBins_(nrbins),
61     nZBins_(nzbins), selectionScript_(sele), seleMan_(info),
62     evaluator_(info) {
63    
64 gezelter 2035 setOutputName(getPrefix(filename) + ".ca2");
65    
66     evaluator_.loadScriptString(sele);
67    
68     if (!evaluator_.isDynamic()) {
69     seleMan_.setSelectionSet(evaluator_.evaluate());
70     }
71     }
72    
73     void ContactAngle2::doFrame() {
74     StuntDouble* sd;
75     int i;
76    
77     // set up the bins for density analysis
78    
79     Mat3x3d hmat = info_->getSnapshotManager()->getCurrentSnapshot()->getHmat();
80     RealType len = std::min(hmat(0, 0), hmat(1, 1));
81     RealType zLen = hmat(2,2);
82 gezelter 2037
83 gezelter 2035 RealType dr = len / (RealType) nRBins_;
84     RealType dz = zLen / (RealType) nZBins_;
85    
86     std::vector<std::vector<RealType> > histo;
87     histo.resize(nRBins_);
88 gezelter 2037 for (unsigned int i = 0; i < histo.size(); ++i){
89 gezelter 2035 histo[i].resize(nZBins_);
90     std::fill(histo[i].begin(), histo[i].end(), 0.0);
91     }
92    
93     if (evaluator_.isDynamic()) {
94     seleMan_.setSelectionSet(evaluator_.evaluate());
95     }
96    
97    
98     RealType mtot = 0.0;
99     Vector3d com(V3Zero);
100     RealType mass;
101    
102     for (sd = seleMan_.beginSelected(i); sd != NULL;
103     sd = seleMan_.nextSelected(i)) {
104     mass = sd->getMass();
105     mtot += mass;
106     com += sd->getPos() * mass;
107     }
108    
109     com /= mtot;
110    
111     // now that we have the centroid, we can make cylindrical density maps
112     Vector3d pos;
113     RealType r;
114     RealType z;
115    
116     for (sd = seleMan_.beginSelected(i); sd != NULL;
117     sd = seleMan_.nextSelected(i)) {
118     pos = sd->getPos() - com;
119 gezelter 2037
120     // r goes from zero upwards
121 gezelter 2035 r = sqrt(pow(pos.x(), 2) + pow(pos.y(), 2));
122 gezelter 2037 // z is possibly symmetric around 0
123     z = pos.z();
124    
125 gezelter 2072 int whichRBin = int(r / dr);
126     int whichZBin = int( (zLen/2.0 + z) / dz);
127 gezelter 2035
128 gezelter 2073 if ((whichRBin < int(nRBins_)) && (whichZBin >= 0) && (whichZBin < int(nZBins_))) {
129     histo[whichRBin][whichZBin] += sd->getMass();
130 gezelter 2072 }
131 gezelter 2035
132     }
133    
134     for(unsigned int i = 0 ; i < histo.size(); ++i){
135    
136     RealType rL = i * dr;
137     RealType rU = rL + dr;
138     RealType volSlice = NumericConstant::PI * dz * (( rU*rU ) - ( rL*rL ));
139    
140 gezelter 2037 for (unsigned int j = 0; j < histo[i].size(); ++j) {
141 gezelter 2035 histo[i][j] *= PhysicalConstants::densityConvert / volSlice;
142     }
143     }
144    
145 gezelter 2037 std::vector<Vector<RealType, 2> > points;
146     points.clear();
147    
148 gezelter 2036 for (unsigned int j = 0; j < nZBins_; ++j) {
149 gezelter 2037
150     // The z coordinates were measured relative to the selection
151     // center of mass. However, we're interested in the elevation
152     // above the solid surface. Also, the binning was done around
153     // zero with enough bins to cover the zLength of the box:
154    
155     RealType thez = com.z() - solidZ_ - zLen/2.0 + dz * (j + 0.5);
156 gezelter 2036 bool aboveThresh = false;
157 gezelter 2037 bool foundThresh = false;
158     int rloc = 0;
159    
160 gezelter 2071 for (std::size_t i = 0; i < nRBins_; ++i) {
161    
162 gezelter 2036 if (histo[i][j] >= threshDens_) aboveThresh = true;
163    
164     if (aboveThresh && (histo[i][j] <= threshDens_)) {
165 gezelter 2037 rloc = i;
166     foundThresh = true;
167     aboveThresh = false;
168 gezelter 2035 }
169 gezelter 2037
170 gezelter 2035 }
171 gezelter 2037 if (foundThresh) {
172     Vector<RealType,2> point;
173     point[0] = dr*(rloc+0.5);
174     point[1] = thez;
175 gezelter 2039
176     if (thez > bufferLength_) {
177     points.push_back( point );
178     }
179 gezelter 2037 }
180 gezelter 2035 }
181 gezelter 2037
182     int numPoints = points.size();
183    
184     // Compute the average of the data points.
185     Vector<RealType, 2> average = points[0];
186     int i0;
187     for (i0 = 1; i0 < numPoints; ++i0) {
188     average += points[i0];
189     }
190     RealType invNumPoints = ((RealType)1)/(RealType)numPoints;
191     average *= invNumPoints;
192 gezelter 2036
193 gezelter 2037 DynamicRectMatrix<RealType> mat(4, 4);
194     int row, col;
195     for (row = 0; row < 4; ++row) {
196     for (col = 0; col < 4; ++col){
197     mat(row,col) = 0.0;
198     }
199     }
200     for (int i = 0; i < numPoints; ++i) {
201     RealType x = points[i][0];
202     RealType y = points[i][1];
203     RealType x2 = x*x;
204     RealType y2 = y*y;
205     RealType xy = x*y;
206     RealType r2 = x2+y2;
207     RealType xr2 = x*r2;
208     RealType yr2 = y*r2;
209     RealType r4 = r2*r2;
210    
211     mat(0,1) += x;
212     mat(0,2) += y;
213     mat(0,3) += r2;
214     mat(1,1) += x2;
215     mat(1,2) += xy;
216     mat(1,3) += xr2;
217     mat(2,2) += y2;
218     mat(2,3) += yr2;
219     mat(3,3) += r4;
220     }
221     mat(0,0) = (RealType)numPoints;
222    
223     for (row = 0; row < 4; ++row) {
224     for (col = 0; col < row; ++col) {
225     mat(row,col) = mat(col,row);
226     }
227     }
228    
229     for (row = 0; row < 4; ++row) {
230     for (col = 0; col < 4; ++col) {
231     mat(row,col) *= invNumPoints;
232     }
233     }
234    
235     JAMA::Eigenvalue<RealType> eigensystem(mat);
236     DynamicRectMatrix<RealType> evects(4, 4);
237     DynamicVector<RealType> evals(4);
238    
239     eigensystem.getRealEigenvalues(evals);
240     eigensystem.getV(evects);
241    
242     DynamicVector<RealType> evector = evects.getColumn(0);
243     RealType inv = ((RealType)1)/evector[3]; // beware zero divide
244     RealType coeff[3];
245     for (row = 0; row < 3; ++row) {
246     coeff[row] = inv*evector[row];
247     }
248    
249     Vector<RealType, 2> center;
250 gezelter 2035
251 gezelter 2037 center[0] = -((RealType)0.5)*coeff[1];
252     center[1] = -((RealType)0.5)*coeff[2];
253     RealType radius = sqrt(fabs(center[0]*center[0] + center[1]*center[1]
254     - coeff[0]));
255    
256     int i1;
257     for (i1 = 0; i1 < 100; ++i1) {
258     // Update the iterates.
259     Vector<RealType, 2> current = center;
260    
261     // Compute average L, dL/da, dL/db.
262     RealType lenAverage = (RealType)0;
263     Vector<RealType, 2> derLenAverage = Vector<RealType, 2>(0.0);
264     for (i0 = 0; i0 < numPoints; ++i0) {
265     Vector<RealType, 2> diff = points[i0] - center;
266     RealType length = diff.length();
267     if (length > 1e-6) {
268     lenAverage += length;
269     RealType invLength = ((RealType)1)/length;
270     derLenAverage -= invLength*diff;
271     }
272     }
273     lenAverage *= invNumPoints;
274     derLenAverage *= invNumPoints;
275    
276     center = average + lenAverage*derLenAverage;
277     radius = lenAverage;
278    
279     Vector<RealType, 2> diff = center - current;
280     if (fabs(diff[0]) <= 1e-6 && fabs(diff[1]) <= 1e-6) {
281     break;
282     }
283     }
284    
285     RealType zCen = center[1];
286     RealType rDrop = radius;
287     RealType ca;
288    
289     if (fabs(zCen) > rDrop) {
290     ca = 180.0;
291     } else {
292 gezelter 2038 ca = 90.0 + asin(zCen/rDrop)*(180.0/M_PI);
293 gezelter 2037 }
294    
295     values_.push_back( ca );
296    
297 gezelter 2035 }
298     }
299    
300    

Properties

Name Value
svn:executable *