ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/applications/sequentialProps/ContactAngle2.cpp
Revision: 2072
Committed: Sat Mar 7 22:54:56 2015 UTC (10 years, 1 month ago) by gezelter
File size: 9468 byte(s)
Log Message:
One bug fix

File Contents

# User Rev Content
1 gezelter 2035 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Redistributions of source code must retain the above copyright
10     * notice, this list of conditions and the following disclaimer.
11     *
12     * 2. Redistributions in binary form must reproduce the above copyright
13     * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31     *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39     * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40     * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41     */
42    
43     #include <algorithm>
44     #include <functional>
45     #include "applications/sequentialProps/ContactAngle2.hpp"
46     #include "utils/simError.h"
47     #include "io/DumpReader.hpp"
48     #include "primitives/Molecule.hpp"
49     #include "utils/NumericConstant.hpp"
50     #include "utils/PhysicalConstants.hpp"
51 gezelter 2037 #include "math/Eigenvalue.hpp"
52 gezelter 2035
53     namespace OpenMD {
54 gezelter 2071
55 gezelter 2035 ContactAngle2::ContactAngle2(SimInfo* info, const std::string& filename,
56     const std::string& sele, RealType solidZ,
57 gezelter 2039 RealType threshDens, RealType bufferLength,
58     int nrbins, int nzbins)
59 gezelter 2071 : SequentialAnalyzer(info, filename), solidZ_(solidZ),
60     threshDens_(threshDens), bufferLength_(bufferLength), nRBins_(nrbins),
61     nZBins_(nzbins), selectionScript_(sele), seleMan_(info),
62     evaluator_(info) {
63    
64 gezelter 2035 setOutputName(getPrefix(filename) + ".ca2");
65    
66     evaluator_.loadScriptString(sele);
67    
68     if (!evaluator_.isDynamic()) {
69     seleMan_.setSelectionSet(evaluator_.evaluate());
70     }
71     }
72    
73     void ContactAngle2::doFrame() {
74     StuntDouble* sd;
75     int i;
76    
77     // set up the bins for density analysis
78    
79     Mat3x3d hmat = info_->getSnapshotManager()->getCurrentSnapshot()->getHmat();
80     RealType len = std::min(hmat(0, 0), hmat(1, 1));
81     RealType zLen = hmat(2,2);
82 gezelter 2037
83 gezelter 2035 RealType dr = len / (RealType) nRBins_;
84     RealType dz = zLen / (RealType) nZBins_;
85    
86     std::vector<std::vector<RealType> > histo;
87     histo.resize(nRBins_);
88 gezelter 2037 for (unsigned int i = 0; i < histo.size(); ++i){
89 gezelter 2035 histo[i].resize(nZBins_);
90     std::fill(histo[i].begin(), histo[i].end(), 0.0);
91     }
92    
93     if (evaluator_.isDynamic()) {
94     seleMan_.setSelectionSet(evaluator_.evaluate());
95     }
96    
97    
98     RealType mtot = 0.0;
99     Vector3d com(V3Zero);
100     RealType mass;
101    
102     for (sd = seleMan_.beginSelected(i); sd != NULL;
103     sd = seleMan_.nextSelected(i)) {
104     mass = sd->getMass();
105     mtot += mass;
106     com += sd->getPos() * mass;
107     }
108    
109     com /= mtot;
110    
111     // now that we have the centroid, we can make cylindrical density maps
112     Vector3d pos;
113     RealType r;
114     RealType z;
115    
116     for (sd = seleMan_.beginSelected(i); sd != NULL;
117     sd = seleMan_.nextSelected(i)) {
118     pos = sd->getPos() - com;
119 gezelter 2037
120     // r goes from zero upwards
121 gezelter 2035 r = sqrt(pow(pos.x(), 2) + pow(pos.y(), 2));
122 gezelter 2037 // z is possibly symmetric around 0
123     z = pos.z();
124    
125 gezelter 2072 int whichRBin = int(r / dr);
126     int whichZBin = int( (zLen/2.0 + z) / dz);
127 gezelter 2035
128 gezelter 2072 if ((whichRBin < nRBins_) && (whichZBin >= 0) && (whichZBin < nZBins_)) {
129     std::size_t i = static_cast<std::size_t>(whichRBin);
130     std::size_t j = static_cast<std::size_t>(whichZBin);
131     histo[i][j] += sd->getMass();
132     }
133 gezelter 2035
134     }
135    
136     for(unsigned int i = 0 ; i < histo.size(); ++i){
137    
138     RealType rL = i * dr;
139     RealType rU = rL + dr;
140     RealType volSlice = NumericConstant::PI * dz * (( rU*rU ) - ( rL*rL ));
141    
142 gezelter 2037 for (unsigned int j = 0; j < histo[i].size(); ++j) {
143 gezelter 2035 histo[i][j] *= PhysicalConstants::densityConvert / volSlice;
144     }
145     }
146    
147 gezelter 2037 std::vector<Vector<RealType, 2> > points;
148     points.clear();
149    
150 gezelter 2036 for (unsigned int j = 0; j < nZBins_; ++j) {
151 gezelter 2037
152     // The z coordinates were measured relative to the selection
153     // center of mass. However, we're interested in the elevation
154     // above the solid surface. Also, the binning was done around
155     // zero with enough bins to cover the zLength of the box:
156    
157     RealType thez = com.z() - solidZ_ - zLen/2.0 + dz * (j + 0.5);
158 gezelter 2036 bool aboveThresh = false;
159 gezelter 2037 bool foundThresh = false;
160     int rloc = 0;
161    
162 gezelter 2071 for (std::size_t i = 0; i < nRBins_; ++i) {
163    
164 gezelter 2036 if (histo[i][j] >= threshDens_) aboveThresh = true;
165    
166     if (aboveThresh && (histo[i][j] <= threshDens_)) {
167 gezelter 2037 rloc = i;
168     foundThresh = true;
169     aboveThresh = false;
170 gezelter 2035 }
171 gezelter 2037
172 gezelter 2035 }
173 gezelter 2037 if (foundThresh) {
174     Vector<RealType,2> point;
175     point[0] = dr*(rloc+0.5);
176     point[1] = thez;
177 gezelter 2039
178     if (thez > bufferLength_) {
179     points.push_back( point );
180     }
181 gezelter 2037 }
182 gezelter 2035 }
183 gezelter 2037
184     int numPoints = points.size();
185    
186     // Compute the average of the data points.
187     Vector<RealType, 2> average = points[0];
188     int i0;
189     for (i0 = 1; i0 < numPoints; ++i0) {
190     average += points[i0];
191     }
192     RealType invNumPoints = ((RealType)1)/(RealType)numPoints;
193     average *= invNumPoints;
194 gezelter 2036
195 gezelter 2037 DynamicRectMatrix<RealType> mat(4, 4);
196     int row, col;
197     for (row = 0; row < 4; ++row) {
198     for (col = 0; col < 4; ++col){
199     mat(row,col) = 0.0;
200     }
201     }
202     for (int i = 0; i < numPoints; ++i) {
203     RealType x = points[i][0];
204     RealType y = points[i][1];
205     RealType x2 = x*x;
206     RealType y2 = y*y;
207     RealType xy = x*y;
208     RealType r2 = x2+y2;
209     RealType xr2 = x*r2;
210     RealType yr2 = y*r2;
211     RealType r4 = r2*r2;
212    
213     mat(0,1) += x;
214     mat(0,2) += y;
215     mat(0,3) += r2;
216     mat(1,1) += x2;
217     mat(1,2) += xy;
218     mat(1,3) += xr2;
219     mat(2,2) += y2;
220     mat(2,3) += yr2;
221     mat(3,3) += r4;
222     }
223     mat(0,0) = (RealType)numPoints;
224    
225     for (row = 0; row < 4; ++row) {
226     for (col = 0; col < row; ++col) {
227     mat(row,col) = mat(col,row);
228     }
229     }
230    
231     for (row = 0; row < 4; ++row) {
232     for (col = 0; col < 4; ++col) {
233     mat(row,col) *= invNumPoints;
234     }
235     }
236    
237     JAMA::Eigenvalue<RealType> eigensystem(mat);
238     DynamicRectMatrix<RealType> evects(4, 4);
239     DynamicVector<RealType> evals(4);
240    
241     eigensystem.getRealEigenvalues(evals);
242     eigensystem.getV(evects);
243    
244     DynamicVector<RealType> evector = evects.getColumn(0);
245     RealType inv = ((RealType)1)/evector[3]; // beware zero divide
246     RealType coeff[3];
247     for (row = 0; row < 3; ++row) {
248     coeff[row] = inv*evector[row];
249     }
250    
251     Vector<RealType, 2> center;
252 gezelter 2035
253 gezelter 2037 center[0] = -((RealType)0.5)*coeff[1];
254     center[1] = -((RealType)0.5)*coeff[2];
255     RealType radius = sqrt(fabs(center[0]*center[0] + center[1]*center[1]
256     - coeff[0]));
257    
258     int i1;
259     for (i1 = 0; i1 < 100; ++i1) {
260     // Update the iterates.
261     Vector<RealType, 2> current = center;
262    
263     // Compute average L, dL/da, dL/db.
264     RealType lenAverage = (RealType)0;
265     Vector<RealType, 2> derLenAverage = Vector<RealType, 2>(0.0);
266     for (i0 = 0; i0 < numPoints; ++i0) {
267     Vector<RealType, 2> diff = points[i0] - center;
268     RealType length = diff.length();
269     if (length > 1e-6) {
270     lenAverage += length;
271     RealType invLength = ((RealType)1)/length;
272     derLenAverage -= invLength*diff;
273     }
274     }
275     lenAverage *= invNumPoints;
276     derLenAverage *= invNumPoints;
277    
278     center = average + lenAverage*derLenAverage;
279     radius = lenAverage;
280    
281     Vector<RealType, 2> diff = center - current;
282     if (fabs(diff[0]) <= 1e-6 && fabs(diff[1]) <= 1e-6) {
283     break;
284     }
285     }
286    
287     RealType zCen = center[1];
288     RealType rDrop = radius;
289     RealType ca;
290    
291     if (fabs(zCen) > rDrop) {
292     ca = 180.0;
293     } else {
294 gezelter 2038 ca = 90.0 + asin(zCen/rDrop)*(180.0/M_PI);
295 gezelter 2037 }
296    
297     values_.push_back( ca );
298    
299 gezelter 2035 }
300     }
301    
302    

Properties

Name Value
svn:executable *