1 |
gezelter |
2035 |
/* |
2 |
|
|
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
|
* |
4 |
|
|
* The University of Notre Dame grants you ("Licensee") a |
5 |
|
|
* non-exclusive, royalty free, license to use, modify and |
6 |
|
|
* redistribute this software in source and binary code form, provided |
7 |
|
|
* that the following conditions are met: |
8 |
|
|
* |
9 |
|
|
* 1. Redistributions of source code must retain the above copyright |
10 |
|
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
|
* |
12 |
|
|
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
|
* documentation and/or other materials provided with the |
15 |
|
|
* distribution. |
16 |
|
|
* |
17 |
|
|
* This software is provided "AS IS," without a warranty of any |
18 |
|
|
* kind. All express or implied conditions, representations and |
19 |
|
|
* warranties, including any implied warranty of merchantability, |
20 |
|
|
* fitness for a particular purpose or non-infringement, are hereby |
21 |
|
|
* excluded. The University of Notre Dame and its licensors shall not |
22 |
|
|
* be liable for any damages suffered by licensee as a result of |
23 |
|
|
* using, modifying or distributing the software or its |
24 |
|
|
* derivatives. In no event will the University of Notre Dame or its |
25 |
|
|
* licensors be liable for any lost revenue, profit or data, or for |
26 |
|
|
* direct, indirect, special, consequential, incidental or punitive |
27 |
|
|
* damages, however caused and regardless of the theory of liability, |
28 |
|
|
* arising out of the use of or inability to use software, even if the |
29 |
|
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
|
* such damages. |
31 |
|
|
* |
32 |
|
|
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
|
|
* research, please cite the appropriate papers when you publish your |
34 |
|
|
* work. Good starting points are: |
35 |
|
|
* |
36 |
|
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
|
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
|
|
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
|
|
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
|
*/ |
42 |
|
|
|
43 |
|
|
#include <algorithm> |
44 |
|
|
#include <functional> |
45 |
|
|
#include "applications/sequentialProps/ContactAngle2.hpp" |
46 |
|
|
#include "utils/simError.h" |
47 |
|
|
#include "io/DumpReader.hpp" |
48 |
|
|
#include "primitives/Molecule.hpp" |
49 |
|
|
#include "utils/NumericConstant.hpp" |
50 |
|
|
#include "utils/PhysicalConstants.hpp" |
51 |
gezelter |
2037 |
#include "math/Eigenvalue.hpp" |
52 |
gezelter |
2035 |
|
53 |
|
|
namespace OpenMD { |
54 |
|
|
|
55 |
|
|
ContactAngle2::ContactAngle2(SimInfo* info, const std::string& filename, |
56 |
|
|
const std::string& sele, RealType solidZ, |
57 |
gezelter |
2039 |
RealType threshDens, RealType bufferLength, |
58 |
|
|
int nrbins, int nzbins) |
59 |
gezelter |
2035 |
: SequentialAnalyzer(info, filename), selectionScript_(sele), |
60 |
|
|
evaluator_(info), seleMan_(info), solidZ_(solidZ), |
61 |
gezelter |
2039 |
threshDens_(threshDens), bufferLength_(bufferLength), |
62 |
|
|
nRBins_(nrbins), nZBins_(nzbins) { |
63 |
gezelter |
2037 |
|
64 |
gezelter |
2035 |
setOutputName(getPrefix(filename) + ".ca2"); |
65 |
|
|
|
66 |
|
|
evaluator_.loadScriptString(sele); |
67 |
|
|
|
68 |
|
|
if (!evaluator_.isDynamic()) { |
69 |
|
|
seleMan_.setSelectionSet(evaluator_.evaluate()); |
70 |
|
|
} |
71 |
|
|
} |
72 |
|
|
|
73 |
|
|
void ContactAngle2::doFrame() { |
74 |
|
|
StuntDouble* sd; |
75 |
|
|
int i; |
76 |
|
|
|
77 |
|
|
// set up the bins for density analysis |
78 |
|
|
|
79 |
|
|
Mat3x3d hmat = info_->getSnapshotManager()->getCurrentSnapshot()->getHmat(); |
80 |
|
|
RealType len = std::min(hmat(0, 0), hmat(1, 1)); |
81 |
|
|
RealType zLen = hmat(2,2); |
82 |
gezelter |
2037 |
|
83 |
gezelter |
2035 |
RealType dr = len / (RealType) nRBins_; |
84 |
|
|
RealType dz = zLen / (RealType) nZBins_; |
85 |
|
|
|
86 |
|
|
std::vector<std::vector<RealType> > histo; |
87 |
|
|
histo.resize(nRBins_); |
88 |
gezelter |
2037 |
for (unsigned int i = 0; i < histo.size(); ++i){ |
89 |
gezelter |
2035 |
histo[i].resize(nZBins_); |
90 |
|
|
std::fill(histo[i].begin(), histo[i].end(), 0.0); |
91 |
|
|
} |
92 |
|
|
|
93 |
|
|
if (evaluator_.isDynamic()) { |
94 |
|
|
seleMan_.setSelectionSet(evaluator_.evaluate()); |
95 |
|
|
} |
96 |
|
|
|
97 |
|
|
|
98 |
|
|
RealType mtot = 0.0; |
99 |
|
|
Vector3d com(V3Zero); |
100 |
|
|
RealType mass; |
101 |
|
|
|
102 |
|
|
for (sd = seleMan_.beginSelected(i); sd != NULL; |
103 |
|
|
sd = seleMan_.nextSelected(i)) { |
104 |
|
|
mass = sd->getMass(); |
105 |
|
|
mtot += mass; |
106 |
|
|
com += sd->getPos() * mass; |
107 |
|
|
} |
108 |
|
|
|
109 |
|
|
com /= mtot; |
110 |
|
|
|
111 |
|
|
// now that we have the centroid, we can make cylindrical density maps |
112 |
|
|
Vector3d pos; |
113 |
|
|
RealType r; |
114 |
|
|
RealType z; |
115 |
|
|
|
116 |
|
|
for (sd = seleMan_.beginSelected(i); sd != NULL; |
117 |
|
|
sd = seleMan_.nextSelected(i)) { |
118 |
|
|
pos = sd->getPos() - com; |
119 |
gezelter |
2037 |
|
120 |
|
|
// r goes from zero upwards |
121 |
gezelter |
2035 |
r = sqrt(pow(pos.x(), 2) + pow(pos.y(), 2)); |
122 |
gezelter |
2037 |
// z is possibly symmetric around 0 |
123 |
|
|
z = pos.z(); |
124 |
|
|
|
125 |
gezelter |
2035 |
int whichRBin = int(r / dr); |
126 |
gezelter |
2037 |
int whichZBin = int( (zLen/2.0 + z) / dz); |
127 |
gezelter |
2035 |
|
128 |
gezelter |
2037 |
if ((whichRBin < nRBins_) && (whichZBin >= 0) && (whichZBin < nZBins_)) |
129 |
gezelter |
2035 |
histo[whichRBin][whichZBin] += sd->getMass(); |
130 |
|
|
|
131 |
|
|
} |
132 |
|
|
|
133 |
|
|
for(unsigned int i = 0 ; i < histo.size(); ++i){ |
134 |
|
|
|
135 |
|
|
RealType rL = i * dr; |
136 |
|
|
RealType rU = rL + dr; |
137 |
|
|
RealType volSlice = NumericConstant::PI * dz * (( rU*rU ) - ( rL*rL )); |
138 |
|
|
|
139 |
gezelter |
2037 |
for (unsigned int j = 0; j < histo[i].size(); ++j) { |
140 |
gezelter |
2035 |
histo[i][j] *= PhysicalConstants::densityConvert / volSlice; |
141 |
|
|
} |
142 |
|
|
} |
143 |
|
|
|
144 |
gezelter |
2037 |
std::vector<Vector<RealType, 2> > points; |
145 |
|
|
points.clear(); |
146 |
|
|
|
147 |
gezelter |
2036 |
for (unsigned int j = 0; j < nZBins_; ++j) { |
148 |
gezelter |
2037 |
|
149 |
|
|
// The z coordinates were measured relative to the selection |
150 |
|
|
// center of mass. However, we're interested in the elevation |
151 |
|
|
// above the solid surface. Also, the binning was done around |
152 |
|
|
// zero with enough bins to cover the zLength of the box: |
153 |
|
|
|
154 |
|
|
RealType thez = com.z() - solidZ_ - zLen/2.0 + dz * (j + 0.5); |
155 |
gezelter |
2036 |
bool aboveThresh = false; |
156 |
gezelter |
2037 |
bool foundThresh = false; |
157 |
|
|
int rloc = 0; |
158 |
|
|
|
159 |
gezelter |
2036 |
for (unsigned int i = 0; i < nRBins_; ++i) { |
160 |
|
|
RealType ther = dr * (i + 0.5); |
161 |
|
|
if (histo[i][j] >= threshDens_) aboveThresh = true; |
162 |
|
|
|
163 |
|
|
if (aboveThresh && (histo[i][j] <= threshDens_)) { |
164 |
gezelter |
2037 |
rloc = i; |
165 |
|
|
foundThresh = true; |
166 |
|
|
aboveThresh = false; |
167 |
gezelter |
2035 |
} |
168 |
gezelter |
2037 |
|
169 |
gezelter |
2035 |
} |
170 |
gezelter |
2037 |
if (foundThresh) { |
171 |
|
|
Vector<RealType,2> point; |
172 |
|
|
point[0] = dr*(rloc+0.5); |
173 |
|
|
point[1] = thez; |
174 |
gezelter |
2039 |
|
175 |
|
|
if (thez > bufferLength_) { |
176 |
|
|
points.push_back( point ); |
177 |
|
|
} |
178 |
gezelter |
2037 |
} |
179 |
gezelter |
2035 |
} |
180 |
gezelter |
2037 |
|
181 |
|
|
int numPoints = points.size(); |
182 |
|
|
|
183 |
|
|
// Compute the average of the data points. |
184 |
|
|
Vector<RealType, 2> average = points[0]; |
185 |
|
|
int i0; |
186 |
|
|
for (i0 = 1; i0 < numPoints; ++i0) { |
187 |
|
|
average += points[i0]; |
188 |
|
|
} |
189 |
|
|
RealType invNumPoints = ((RealType)1)/(RealType)numPoints; |
190 |
|
|
average *= invNumPoints; |
191 |
gezelter |
2036 |
|
192 |
gezelter |
2037 |
DynamicRectMatrix<RealType> mat(4, 4); |
193 |
|
|
int row, col; |
194 |
|
|
for (row = 0; row < 4; ++row) { |
195 |
|
|
for (col = 0; col < 4; ++col){ |
196 |
|
|
mat(row,col) = 0.0; |
197 |
|
|
} |
198 |
|
|
} |
199 |
|
|
for (int i = 0; i < numPoints; ++i) { |
200 |
|
|
RealType x = points[i][0]; |
201 |
|
|
RealType y = points[i][1]; |
202 |
|
|
RealType x2 = x*x; |
203 |
|
|
RealType y2 = y*y; |
204 |
|
|
RealType xy = x*y; |
205 |
|
|
RealType r2 = x2+y2; |
206 |
|
|
RealType xr2 = x*r2; |
207 |
|
|
RealType yr2 = y*r2; |
208 |
|
|
RealType r4 = r2*r2; |
209 |
|
|
|
210 |
|
|
mat(0,1) += x; |
211 |
|
|
mat(0,2) += y; |
212 |
|
|
mat(0,3) += r2; |
213 |
|
|
mat(1,1) += x2; |
214 |
|
|
mat(1,2) += xy; |
215 |
|
|
mat(1,3) += xr2; |
216 |
|
|
mat(2,2) += y2; |
217 |
|
|
mat(2,3) += yr2; |
218 |
|
|
mat(3,3) += r4; |
219 |
|
|
} |
220 |
|
|
mat(0,0) = (RealType)numPoints; |
221 |
|
|
|
222 |
|
|
for (row = 0; row < 4; ++row) { |
223 |
|
|
for (col = 0; col < row; ++col) { |
224 |
|
|
mat(row,col) = mat(col,row); |
225 |
|
|
} |
226 |
|
|
} |
227 |
|
|
|
228 |
|
|
for (row = 0; row < 4; ++row) { |
229 |
|
|
for (col = 0; col < 4; ++col) { |
230 |
|
|
mat(row,col) *= invNumPoints; |
231 |
|
|
} |
232 |
|
|
} |
233 |
|
|
|
234 |
|
|
JAMA::Eigenvalue<RealType> eigensystem(mat); |
235 |
|
|
DynamicRectMatrix<RealType> evects(4, 4); |
236 |
|
|
DynamicVector<RealType> evals(4); |
237 |
|
|
|
238 |
|
|
eigensystem.getRealEigenvalues(evals); |
239 |
|
|
eigensystem.getV(evects); |
240 |
|
|
|
241 |
|
|
DynamicVector<RealType> evector = evects.getColumn(0); |
242 |
|
|
RealType inv = ((RealType)1)/evector[3]; // beware zero divide |
243 |
|
|
RealType coeff[3]; |
244 |
|
|
for (row = 0; row < 3; ++row) { |
245 |
|
|
coeff[row] = inv*evector[row]; |
246 |
|
|
} |
247 |
|
|
|
248 |
|
|
Vector<RealType, 2> center; |
249 |
gezelter |
2035 |
|
250 |
gezelter |
2037 |
center[0] = -((RealType)0.5)*coeff[1]; |
251 |
|
|
center[1] = -((RealType)0.5)*coeff[2]; |
252 |
|
|
RealType radius = sqrt(fabs(center[0]*center[0] + center[1]*center[1] |
253 |
|
|
- coeff[0])); |
254 |
|
|
RealType ev0 = fabs(evals[0]); |
255 |
|
|
|
256 |
|
|
int i1; |
257 |
|
|
for (i1 = 0; i1 < 100; ++i1) { |
258 |
|
|
// Update the iterates. |
259 |
|
|
Vector<RealType, 2> current = center; |
260 |
|
|
|
261 |
|
|
// Compute average L, dL/da, dL/db. |
262 |
|
|
RealType lenAverage = (RealType)0; |
263 |
|
|
Vector<RealType, 2> derLenAverage = Vector<RealType, 2>(0.0); |
264 |
|
|
for (i0 = 0; i0 < numPoints; ++i0) { |
265 |
|
|
Vector<RealType, 2> diff = points[i0] - center; |
266 |
|
|
RealType length = diff.length(); |
267 |
|
|
if (length > 1e-6) { |
268 |
|
|
lenAverage += length; |
269 |
|
|
RealType invLength = ((RealType)1)/length; |
270 |
|
|
derLenAverage -= invLength*diff; |
271 |
|
|
} |
272 |
|
|
} |
273 |
|
|
lenAverage *= invNumPoints; |
274 |
|
|
derLenAverage *= invNumPoints; |
275 |
|
|
|
276 |
|
|
center = average + lenAverage*derLenAverage; |
277 |
|
|
radius = lenAverage; |
278 |
|
|
|
279 |
|
|
Vector<RealType, 2> diff = center - current; |
280 |
|
|
if (fabs(diff[0]) <= 1e-6 && fabs(diff[1]) <= 1e-6) { |
281 |
|
|
break; |
282 |
|
|
} |
283 |
|
|
} |
284 |
|
|
|
285 |
|
|
RealType zCen = center[1]; |
286 |
|
|
RealType rDrop = radius; |
287 |
|
|
RealType ca; |
288 |
|
|
|
289 |
|
|
if (fabs(zCen) > rDrop) { |
290 |
|
|
ca = 180.0; |
291 |
|
|
} else { |
292 |
gezelter |
2038 |
ca = 90.0 + asin(zCen/rDrop)*(180.0/M_PI); |
293 |
gezelter |
2037 |
} |
294 |
|
|
|
295 |
|
|
values_.push_back( ca ); |
296 |
|
|
|
297 |
gezelter |
2035 |
} |
298 |
|
|
} |
299 |
|
|
|
300 |
|
|
|