ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/applications/sequentialProps/ContactAngle2.cpp
Revision: 2038
Committed: Tue Nov 4 22:02:45 2014 UTC (10 years, 5 months ago) by gezelter
File size: 9298 byte(s)
Log Message:
Fixed a arcsin sign bug

File Contents

# User Rev Content
1 gezelter 2035 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Redistributions of source code must retain the above copyright
10     * notice, this list of conditions and the following disclaimer.
11     *
12     * 2. Redistributions in binary form must reproduce the above copyright
13     * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31     *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39     * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40     * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41     */
42    
43     #include <algorithm>
44     #include <functional>
45     #include "applications/sequentialProps/ContactAngle2.hpp"
46     #include "utils/simError.h"
47     #include "io/DumpReader.hpp"
48     #include "primitives/Molecule.hpp"
49     #include "utils/NumericConstant.hpp"
50     #include "utils/PhysicalConstants.hpp"
51 gezelter 2037 #include "math/Eigenvalue.hpp"
52 gezelter 2035
53     namespace OpenMD {
54    
55     ContactAngle2::ContactAngle2(SimInfo* info, const std::string& filename,
56     const std::string& sele, RealType solidZ,
57     RealType threshDens, int nrbins, int nzbins)
58     : SequentialAnalyzer(info, filename), selectionScript_(sele),
59     evaluator_(info), seleMan_(info), solidZ_(solidZ),
60     threshDens_(threshDens), nRBins_(nrbins), nZBins_(nzbins) {
61 gezelter 2037
62 gezelter 2035 setOutputName(getPrefix(filename) + ".ca2");
63    
64     evaluator_.loadScriptString(sele);
65    
66     if (!evaluator_.isDynamic()) {
67     seleMan_.setSelectionSet(evaluator_.evaluate());
68     }
69     }
70    
71     void ContactAngle2::doFrame() {
72     StuntDouble* sd;
73     int i;
74    
75     // set up the bins for density analysis
76    
77     Mat3x3d hmat = info_->getSnapshotManager()->getCurrentSnapshot()->getHmat();
78     RealType len = std::min(hmat(0, 0), hmat(1, 1));
79     RealType zLen = hmat(2,2);
80 gezelter 2037
81 gezelter 2035 RealType dr = len / (RealType) nRBins_;
82     RealType dz = zLen / (RealType) nZBins_;
83    
84     std::vector<std::vector<RealType> > histo;
85     histo.resize(nRBins_);
86 gezelter 2037 for (unsigned int i = 0; i < histo.size(); ++i){
87 gezelter 2035 histo[i].resize(nZBins_);
88     std::fill(histo[i].begin(), histo[i].end(), 0.0);
89     }
90    
91     if (evaluator_.isDynamic()) {
92     seleMan_.setSelectionSet(evaluator_.evaluate());
93     }
94    
95    
96     RealType mtot = 0.0;
97     Vector3d com(V3Zero);
98     RealType mass;
99    
100     for (sd = seleMan_.beginSelected(i); sd != NULL;
101     sd = seleMan_.nextSelected(i)) {
102     mass = sd->getMass();
103     mtot += mass;
104     com += sd->getPos() * mass;
105     }
106    
107     com /= mtot;
108    
109     // now that we have the centroid, we can make cylindrical density maps
110     Vector3d pos;
111     RealType r;
112     RealType z;
113    
114     for (sd = seleMan_.beginSelected(i); sd != NULL;
115     sd = seleMan_.nextSelected(i)) {
116     pos = sd->getPos() - com;
117 gezelter 2037
118     // r goes from zero upwards
119 gezelter 2035 r = sqrt(pow(pos.x(), 2) + pow(pos.y(), 2));
120 gezelter 2037 // z is possibly symmetric around 0
121     z = pos.z();
122    
123 gezelter 2035 int whichRBin = int(r / dr);
124 gezelter 2037 int whichZBin = int( (zLen/2.0 + z) / dz);
125 gezelter 2035
126 gezelter 2037 if ((whichRBin < nRBins_) && (whichZBin >= 0) && (whichZBin < nZBins_))
127 gezelter 2035 histo[whichRBin][whichZBin] += sd->getMass();
128    
129     }
130    
131     for(unsigned int i = 0 ; i < histo.size(); ++i){
132    
133     RealType rL = i * dr;
134     RealType rU = rL + dr;
135     RealType volSlice = NumericConstant::PI * dz * (( rU*rU ) - ( rL*rL ));
136    
137 gezelter 2037 for (unsigned int j = 0; j < histo[i].size(); ++j) {
138 gezelter 2035 histo[i][j] *= PhysicalConstants::densityConvert / volSlice;
139     }
140     }
141    
142 gezelter 2037 std::vector<Vector<RealType, 2> > points;
143     points.clear();
144    
145 gezelter 2036 for (unsigned int j = 0; j < nZBins_; ++j) {
146 gezelter 2037
147     // The z coordinates were measured relative to the selection
148     // center of mass. However, we're interested in the elevation
149     // above the solid surface. Also, the binning was done around
150     // zero with enough bins to cover the zLength of the box:
151    
152     RealType thez = com.z() - solidZ_ - zLen/2.0 + dz * (j + 0.5);
153 gezelter 2036 bool aboveThresh = false;
154 gezelter 2037 bool foundThresh = false;
155     int rloc = 0;
156    
157 gezelter 2036 for (unsigned int i = 0; i < nRBins_; ++i) {
158     RealType ther = dr * (i + 0.5);
159     if (histo[i][j] >= threshDens_) aboveThresh = true;
160    
161     if (aboveThresh && (histo[i][j] <= threshDens_)) {
162 gezelter 2037 rloc = i;
163     foundThresh = true;
164     aboveThresh = false;
165 gezelter 2035 }
166 gezelter 2037
167 gezelter 2035 }
168 gezelter 2037 if (foundThresh) {
169     Vector<RealType,2> point;
170     point[0] = dr*(rloc+0.5);
171     point[1] = thez;
172     points.push_back( point );
173     }
174 gezelter 2035 }
175 gezelter 2037
176     int numPoints = points.size();
177    
178     // Compute the average of the data points.
179     Vector<RealType, 2> average = points[0];
180     int i0;
181     for (i0 = 1; i0 < numPoints; ++i0) {
182     average += points[i0];
183     }
184     RealType invNumPoints = ((RealType)1)/(RealType)numPoints;
185     average *= invNumPoints;
186 gezelter 2036
187 gezelter 2037 DynamicRectMatrix<RealType> mat(4, 4);
188     int row, col;
189     for (row = 0; row < 4; ++row) {
190     for (col = 0; col < 4; ++col){
191     mat(row,col) = 0.0;
192     }
193     }
194     for (int i = 0; i < numPoints; ++i) {
195     RealType x = points[i][0];
196     RealType y = points[i][1];
197     RealType x2 = x*x;
198     RealType y2 = y*y;
199     RealType xy = x*y;
200     RealType r2 = x2+y2;
201     RealType xr2 = x*r2;
202     RealType yr2 = y*r2;
203     RealType r4 = r2*r2;
204    
205     mat(0,1) += x;
206     mat(0,2) += y;
207     mat(0,3) += r2;
208     mat(1,1) += x2;
209     mat(1,2) += xy;
210     mat(1,3) += xr2;
211     mat(2,2) += y2;
212     mat(2,3) += yr2;
213     mat(3,3) += r4;
214     }
215     mat(0,0) = (RealType)numPoints;
216    
217     for (row = 0; row < 4; ++row) {
218     for (col = 0; col < row; ++col) {
219     mat(row,col) = mat(col,row);
220     }
221     }
222    
223     for (row = 0; row < 4; ++row) {
224     for (col = 0; col < 4; ++col) {
225     mat(row,col) *= invNumPoints;
226     }
227     }
228    
229     JAMA::Eigenvalue<RealType> eigensystem(mat);
230     DynamicRectMatrix<RealType> evects(4, 4);
231     DynamicVector<RealType> evals(4);
232    
233     eigensystem.getRealEigenvalues(evals);
234     eigensystem.getV(evects);
235    
236     DynamicVector<RealType> evector = evects.getColumn(0);
237     RealType inv = ((RealType)1)/evector[3]; // beware zero divide
238     RealType coeff[3];
239     for (row = 0; row < 3; ++row) {
240     coeff[row] = inv*evector[row];
241     }
242    
243     Vector<RealType, 2> center;
244 gezelter 2035
245 gezelter 2037 center[0] = -((RealType)0.5)*coeff[1];
246     center[1] = -((RealType)0.5)*coeff[2];
247     RealType radius = sqrt(fabs(center[0]*center[0] + center[1]*center[1]
248     - coeff[0]));
249     RealType ev0 = fabs(evals[0]);
250    
251     int i1;
252     for (i1 = 0; i1 < 100; ++i1) {
253     // Update the iterates.
254     Vector<RealType, 2> current = center;
255    
256     // Compute average L, dL/da, dL/db.
257     RealType lenAverage = (RealType)0;
258     Vector<RealType, 2> derLenAverage = Vector<RealType, 2>(0.0);
259     for (i0 = 0; i0 < numPoints; ++i0) {
260     Vector<RealType, 2> diff = points[i0] - center;
261     RealType length = diff.length();
262     if (length > 1e-6) {
263     lenAverage += length;
264     RealType invLength = ((RealType)1)/length;
265     derLenAverage -= invLength*diff;
266     }
267     }
268     lenAverage *= invNumPoints;
269     derLenAverage *= invNumPoints;
270    
271     center = average + lenAverage*derLenAverage;
272     radius = lenAverage;
273    
274     Vector<RealType, 2> diff = center - current;
275     if (fabs(diff[0]) <= 1e-6 && fabs(diff[1]) <= 1e-6) {
276     break;
277     }
278     }
279    
280     RealType zCen = center[1];
281     RealType rDrop = radius;
282     RealType ca;
283    
284     if (fabs(zCen) > rDrop) {
285     ca = 180.0;
286     } else {
287 gezelter 2038 ca = 90.0 + asin(zCen/rDrop)*(180.0/M_PI);
288 gezelter 2037 }
289    
290     values_.push_back( ca );
291    
292 gezelter 2035 }
293     }
294    
295    

Properties

Name Value
svn:executable *