| 1 | 
gezelter | 
2035 | 
/* | 
| 2 | 
  | 
  | 
 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | 
  | 
  | 
 * | 
| 4 | 
  | 
  | 
 * The University of Notre Dame grants you ("Licensee") a | 
| 5 | 
  | 
  | 
 * non-exclusive, royalty free, license to use, modify and | 
| 6 | 
  | 
  | 
 * redistribute this software in source and binary code form, provided | 
| 7 | 
  | 
  | 
 * that the following conditions are met: | 
| 8 | 
  | 
  | 
 * | 
| 9 | 
  | 
  | 
 * 1. Redistributions of source code must retain the above copyright | 
| 10 | 
  | 
  | 
 *    notice, this list of conditions and the following disclaimer. | 
| 11 | 
  | 
  | 
 * | 
| 12 | 
  | 
  | 
 * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | 
  | 
  | 
 *    notice, this list of conditions and the following disclaimer in the | 
| 14 | 
  | 
  | 
 *    documentation and/or other materials provided with the | 
| 15 | 
  | 
  | 
 *    distribution. | 
| 16 | 
  | 
  | 
 * | 
| 17 | 
  | 
  | 
 * This software is provided "AS IS," without a warranty of any | 
| 18 | 
  | 
  | 
 * kind. All express or implied conditions, representations and | 
| 19 | 
  | 
  | 
 * warranties, including any implied warranty of merchantability, | 
| 20 | 
  | 
  | 
 * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | 
  | 
  | 
 * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | 
  | 
  | 
 * be liable for any damages suffered by licensee as a result of | 
| 23 | 
  | 
  | 
 * using, modifying or distributing the software or its | 
| 24 | 
  | 
  | 
 * derivatives. In no event will the University of Notre Dame or its | 
| 25 | 
  | 
  | 
 * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | 
  | 
  | 
 * direct, indirect, special, consequential, incidental or punitive | 
| 27 | 
  | 
  | 
 * damages, however caused and regardless of the theory of liability, | 
| 28 | 
  | 
  | 
 * arising out of the use of or inability to use software, even if the | 
| 29 | 
  | 
  | 
 * University of Notre Dame has been advised of the possibility of | 
| 30 | 
  | 
  | 
 * such damages. | 
| 31 | 
  | 
  | 
 * | 
| 32 | 
  | 
  | 
 * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | 
  | 
  | 
 * research, please cite the appropriate papers when you publish your | 
| 34 | 
  | 
  | 
 * work.  Good starting points are: | 
| 35 | 
  | 
  | 
 *                                                                       | 
| 36 | 
  | 
  | 
 * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).              | 
| 37 | 
  | 
  | 
 * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).           | 
| 38 | 
  | 
  | 
 * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).           | 
| 39 | 
  | 
  | 
 * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | 
  | 
  | 
 * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | 
  | 
  | 
 */ | 
| 42 | 
  | 
  | 
 | 
| 43 | 
  | 
  | 
#include <algorithm> | 
| 44 | 
  | 
  | 
#include <functional> | 
| 45 | 
  | 
  | 
#include "applications/sequentialProps/ContactAngle2.hpp" | 
| 46 | 
  | 
  | 
#include "utils/simError.h" | 
| 47 | 
  | 
  | 
#include "io/DumpReader.hpp" | 
| 48 | 
  | 
  | 
#include "primitives/Molecule.hpp" | 
| 49 | 
  | 
  | 
#include "utils/NumericConstant.hpp" | 
| 50 | 
  | 
  | 
#include "utils/PhysicalConstants.hpp" | 
| 51 | 
gezelter | 
2037 | 
#include "math/Eigenvalue.hpp" | 
| 52 | 
gezelter | 
2035 | 
 | 
| 53 | 
  | 
  | 
namespace OpenMD { | 
| 54 | 
  | 
  | 
 | 
| 55 | 
  | 
  | 
  ContactAngle2::ContactAngle2(SimInfo* info, const std::string& filename,  | 
| 56 | 
  | 
  | 
                               const std::string& sele, RealType solidZ, | 
| 57 | 
  | 
  | 
                               RealType threshDens, int nrbins, int nzbins) | 
| 58 | 
  | 
  | 
    : SequentialAnalyzer(info, filename), selectionScript_(sele),  | 
| 59 | 
  | 
  | 
      evaluator_(info), seleMan_(info), solidZ_(solidZ), | 
| 60 | 
  | 
  | 
      threshDens_(threshDens), nRBins_(nrbins), nZBins_(nzbins) { | 
| 61 | 
gezelter | 
2037 | 
 | 
| 62 | 
gezelter | 
2035 | 
    setOutputName(getPrefix(filename) + ".ca2"); | 
| 63 | 
  | 
  | 
     | 
| 64 | 
  | 
  | 
    evaluator_.loadScriptString(sele); | 
| 65 | 
  | 
  | 
     | 
| 66 | 
  | 
  | 
    if (!evaluator_.isDynamic()) { | 
| 67 | 
  | 
  | 
      seleMan_.setSelectionSet(evaluator_.evaluate()); | 
| 68 | 
  | 
  | 
    }             | 
| 69 | 
  | 
  | 
  } | 
| 70 | 
  | 
  | 
 | 
| 71 | 
  | 
  | 
  void ContactAngle2::doFrame() { | 
| 72 | 
  | 
  | 
    StuntDouble* sd; | 
| 73 | 
  | 
  | 
    int i; | 
| 74 | 
  | 
  | 
 | 
| 75 | 
  | 
  | 
    // set up the bins for density analysis | 
| 76 | 
  | 
  | 
 | 
| 77 | 
  | 
  | 
    Mat3x3d hmat = info_->getSnapshotManager()->getCurrentSnapshot()->getHmat(); | 
| 78 | 
  | 
  | 
    RealType len = std::min(hmat(0, 0), hmat(1, 1)); | 
| 79 | 
  | 
  | 
    RealType zLen = hmat(2,2); | 
| 80 | 
gezelter | 
2037 | 
 | 
| 81 | 
gezelter | 
2035 | 
    RealType dr = len / (RealType) nRBins_; | 
| 82 | 
  | 
  | 
    RealType dz = zLen / (RealType) nZBins_; | 
| 83 | 
  | 
  | 
 | 
| 84 | 
  | 
  | 
    std::vector<std::vector<RealType> > histo; | 
| 85 | 
  | 
  | 
    histo.resize(nRBins_); | 
| 86 | 
gezelter | 
2037 | 
    for (unsigned int i = 0; i < histo.size(); ++i){ | 
| 87 | 
gezelter | 
2035 | 
      histo[i].resize(nZBins_); | 
| 88 | 
  | 
  | 
      std::fill(histo[i].begin(), histo[i].end(), 0.0); | 
| 89 | 
  | 
  | 
    }       | 
| 90 | 
  | 
  | 
         | 
| 91 | 
  | 
  | 
    if (evaluator_.isDynamic()) { | 
| 92 | 
  | 
  | 
      seleMan_.setSelectionSet(evaluator_.evaluate()); | 
| 93 | 
  | 
  | 
    } | 
| 94 | 
  | 
  | 
     | 
| 95 | 
  | 
  | 
 | 
| 96 | 
  | 
  | 
    RealType mtot = 0.0; | 
| 97 | 
  | 
  | 
    Vector3d com(V3Zero); | 
| 98 | 
  | 
  | 
    RealType mass; | 
| 99 | 
  | 
  | 
     | 
| 100 | 
  | 
  | 
    for (sd = seleMan_.beginSelected(i); sd != NULL; | 
| 101 | 
  | 
  | 
         sd = seleMan_.nextSelected(i)) {       | 
| 102 | 
  | 
  | 
      mass = sd->getMass(); | 
| 103 | 
  | 
  | 
      mtot += mass; | 
| 104 | 
  | 
  | 
      com += sd->getPos() * mass; | 
| 105 | 
  | 
  | 
    } | 
| 106 | 
  | 
  | 
 | 
| 107 | 
  | 
  | 
    com /= mtot; | 
| 108 | 
  | 
  | 
 | 
| 109 | 
  | 
  | 
    // now that we have the centroid, we can make cylindrical density maps | 
| 110 | 
  | 
  | 
    Vector3d pos; | 
| 111 | 
  | 
  | 
    RealType r; | 
| 112 | 
  | 
  | 
    RealType z; | 
| 113 | 
  | 
  | 
     | 
| 114 | 
  | 
  | 
    for (sd = seleMan_.beginSelected(i); sd != NULL; | 
| 115 | 
  | 
  | 
         sd = seleMan_.nextSelected(i)) {       | 
| 116 | 
  | 
  | 
      pos = sd->getPos() - com; | 
| 117 | 
gezelter | 
2037 | 
 | 
| 118 | 
  | 
  | 
      // r goes from zero upwards | 
| 119 | 
gezelter | 
2035 | 
      r = sqrt(pow(pos.x(), 2) + pow(pos.y(), 2)); | 
| 120 | 
gezelter | 
2037 | 
      // z is possibly symmetric around 0 | 
| 121 | 
  | 
  | 
      z = pos.z(); | 
| 122 | 
  | 
  | 
           | 
| 123 | 
gezelter | 
2035 | 
      int whichRBin = int(r / dr); | 
| 124 | 
gezelter | 
2037 | 
      int whichZBin = int( (zLen/2.0 + z) / dz); | 
| 125 | 
gezelter | 
2035 | 
       | 
| 126 | 
gezelter | 
2037 | 
      if ((whichRBin < nRBins_) && (whichZBin >= 0) && (whichZBin < nZBins_))  | 
| 127 | 
gezelter | 
2035 | 
        histo[whichRBin][whichZBin] += sd->getMass(); | 
| 128 | 
  | 
  | 
       | 
| 129 | 
  | 
  | 
    } | 
| 130 | 
  | 
  | 
     | 
| 131 | 
  | 
  | 
    for(unsigned int i = 0 ; i < histo.size(); ++i){ | 
| 132 | 
  | 
  | 
 | 
| 133 | 
  | 
  | 
      RealType rL = i * dr; | 
| 134 | 
  | 
  | 
      RealType rU = rL + dr; | 
| 135 | 
  | 
  | 
      RealType volSlice = NumericConstant::PI * dz * (( rU*rU ) - ( rL*rL )); | 
| 136 | 
  | 
  | 
 | 
| 137 | 
gezelter | 
2037 | 
      for (unsigned int j = 0; j < histo[i].size(); ++j) { | 
| 138 | 
gezelter | 
2035 | 
        histo[i][j] *= PhysicalConstants::densityConvert / volSlice; | 
| 139 | 
  | 
  | 
      } | 
| 140 | 
  | 
  | 
    } | 
| 141 | 
  | 
  | 
 | 
| 142 | 
gezelter | 
2037 | 
    std::vector<Vector<RealType, 2> > points; | 
| 143 | 
  | 
  | 
    points.clear(); | 
| 144 | 
  | 
  | 
     | 
| 145 | 
gezelter | 
2036 | 
    for (unsigned int j = 0; j < nZBins_;  ++j) { | 
| 146 | 
gezelter | 
2037 | 
 | 
| 147 | 
  | 
  | 
      // The z coordinates were measured relative to the selection | 
| 148 | 
  | 
  | 
      // center of mass.  However, we're interested in the elevation | 
| 149 | 
  | 
  | 
      // above the solid surface.  Also, the binning was done around | 
| 150 | 
  | 
  | 
      // zero with enough bins to cover the zLength of the box: | 
| 151 | 
  | 
  | 
       | 
| 152 | 
  | 
  | 
      RealType thez =  com.z() - solidZ_  - zLen/2.0 + dz * (j + 0.5); | 
| 153 | 
gezelter | 
2036 | 
      bool aboveThresh = false; | 
| 154 | 
gezelter | 
2037 | 
      bool foundThresh = false; | 
| 155 | 
  | 
  | 
      int rloc = 0; | 
| 156 | 
  | 
  | 
       | 
| 157 | 
gezelter | 
2036 | 
      for (unsigned int i = 0; i < nRBins_;  ++i) { | 
| 158 | 
  | 
  | 
        RealType ther = dr * (i + 0.5); | 
| 159 | 
  | 
  | 
        if (histo[i][j] >= threshDens_) aboveThresh = true; | 
| 160 | 
  | 
  | 
 | 
| 161 | 
  | 
  | 
        if (aboveThresh && (histo[i][j] <= threshDens_)) { | 
| 162 | 
gezelter | 
2037 | 
          rloc = i; | 
| 163 | 
  | 
  | 
          foundThresh = true; | 
| 164 | 
  | 
  | 
          aboveThresh = false; | 
| 165 | 
gezelter | 
2035 | 
        } | 
| 166 | 
gezelter | 
2037 | 
 | 
| 167 | 
gezelter | 
2035 | 
      } | 
| 168 | 
gezelter | 
2037 | 
      if (foundThresh) { | 
| 169 | 
  | 
  | 
        Vector<RealType,2> point; | 
| 170 | 
  | 
  | 
        point[0] = dr*(rloc+0.5); | 
| 171 | 
  | 
  | 
        point[1] = thez; | 
| 172 | 
  | 
  | 
        points.push_back( point );        | 
| 173 | 
  | 
  | 
      }       | 
| 174 | 
gezelter | 
2035 | 
    } | 
| 175 | 
gezelter | 
2037 | 
 | 
| 176 | 
  | 
  | 
    int numPoints = points.size(); | 
| 177 | 
  | 
  | 
 | 
| 178 | 
  | 
  | 
    // Compute the average of the data points. | 
| 179 | 
  | 
  | 
    Vector<RealType, 2> average = points[0]; | 
| 180 | 
  | 
  | 
    int i0; | 
| 181 | 
  | 
  | 
    for (i0 = 1; i0 < numPoints; ++i0) { | 
| 182 | 
  | 
  | 
      average += points[i0]; | 
| 183 | 
  | 
  | 
    } | 
| 184 | 
  | 
  | 
    RealType invNumPoints = ((RealType)1)/(RealType)numPoints; | 
| 185 | 
  | 
  | 
    average *= invNumPoints; | 
| 186 | 
gezelter | 
2036 | 
     | 
| 187 | 
gezelter | 
2037 | 
    DynamicRectMatrix<RealType> mat(4, 4); | 
| 188 | 
  | 
  | 
    int row, col; | 
| 189 | 
  | 
  | 
    for (row = 0; row < 4; ++row) { | 
| 190 | 
  | 
  | 
      for (col = 0; col < 4; ++col){ | 
| 191 | 
  | 
  | 
        mat(row,col) = 0.0;         | 
| 192 | 
  | 
  | 
      } | 
| 193 | 
  | 
  | 
    } | 
| 194 | 
  | 
  | 
    for (int i = 0; i < numPoints; ++i) { | 
| 195 | 
  | 
  | 
      RealType x = points[i][0]; | 
| 196 | 
  | 
  | 
      RealType y = points[i][1]; | 
| 197 | 
  | 
  | 
      RealType x2 = x*x; | 
| 198 | 
  | 
  | 
      RealType y2 = y*y; | 
| 199 | 
  | 
  | 
      RealType xy = x*y; | 
| 200 | 
  | 
  | 
      RealType r2 = x2+y2; | 
| 201 | 
  | 
  | 
      RealType xr2 = x*r2; | 
| 202 | 
  | 
  | 
      RealType yr2 = y*r2; | 
| 203 | 
  | 
  | 
      RealType r4 = r2*r2; | 
| 204 | 
  | 
  | 
 | 
| 205 | 
  | 
  | 
      mat(0,1) += x; | 
| 206 | 
  | 
  | 
      mat(0,2) += y; | 
| 207 | 
  | 
  | 
      mat(0,3) += r2; | 
| 208 | 
  | 
  | 
      mat(1,1) += x2; | 
| 209 | 
  | 
  | 
      mat(1,2) += xy; | 
| 210 | 
  | 
  | 
      mat(1,3) += xr2; | 
| 211 | 
  | 
  | 
      mat(2,2) += y2; | 
| 212 | 
  | 
  | 
      mat(2,3) += yr2; | 
| 213 | 
  | 
  | 
      mat(3,3) += r4; | 
| 214 | 
  | 
  | 
    } | 
| 215 | 
  | 
  | 
    mat(0,0) = (RealType)numPoints; | 
| 216 | 
  | 
  | 
 | 
| 217 | 
  | 
  | 
    for (row = 0; row < 4; ++row) { | 
| 218 | 
  | 
  | 
      for (col = 0; col < row; ++col) { | 
| 219 | 
  | 
  | 
        mat(row,col) = mat(col,row); | 
| 220 | 
  | 
  | 
      } | 
| 221 | 
  | 
  | 
    } | 
| 222 | 
  | 
  | 
 | 
| 223 | 
  | 
  | 
    for (row = 0; row < 4; ++row) { | 
| 224 | 
  | 
  | 
      for (col = 0; col < 4; ++col) { | 
| 225 | 
  | 
  | 
        mat(row,col) *= invNumPoints; | 
| 226 | 
  | 
  | 
      } | 
| 227 | 
  | 
  | 
    } | 
| 228 | 
  | 
  | 
 | 
| 229 | 
  | 
  | 
    JAMA::Eigenvalue<RealType> eigensystem(mat); | 
| 230 | 
  | 
  | 
    DynamicRectMatrix<RealType> evects(4, 4); | 
| 231 | 
  | 
  | 
    DynamicVector<RealType> evals(4); | 
| 232 | 
  | 
  | 
 | 
| 233 | 
  | 
  | 
    eigensystem.getRealEigenvalues(evals); | 
| 234 | 
  | 
  | 
    eigensystem.getV(evects); | 
| 235 | 
  | 
  | 
 | 
| 236 | 
  | 
  | 
    DynamicVector<RealType> evector = evects.getColumn(0); | 
| 237 | 
  | 
  | 
    RealType inv = ((RealType)1)/evector[3];  // beware zero divide | 
| 238 | 
  | 
  | 
    RealType coeff[3]; | 
| 239 | 
  | 
  | 
    for (row = 0; row < 3; ++row) { | 
| 240 | 
  | 
  | 
      coeff[row] = inv*evector[row]; | 
| 241 | 
  | 
  | 
    } | 
| 242 | 
  | 
  | 
 | 
| 243 | 
  | 
  | 
    Vector<RealType, 2> center; | 
| 244 | 
gezelter | 
2035 | 
     | 
| 245 | 
gezelter | 
2037 | 
    center[0] = -((RealType)0.5)*coeff[1]; | 
| 246 | 
  | 
  | 
    center[1] = -((RealType)0.5)*coeff[2]; | 
| 247 | 
  | 
  | 
    RealType radius = sqrt(fabs(center[0]*center[0] + center[1]*center[1] | 
| 248 | 
  | 
  | 
                                - coeff[0])); | 
| 249 | 
  | 
  | 
    RealType ev0 =  fabs(evals[0]); | 
| 250 | 
  | 
  | 
 | 
| 251 | 
  | 
  | 
    int i1; | 
| 252 | 
  | 
  | 
    for (i1 = 0; i1 < 100; ++i1) { | 
| 253 | 
  | 
  | 
      // Update the iterates. | 
| 254 | 
  | 
  | 
      Vector<RealType, 2> current = center; | 
| 255 | 
  | 
  | 
       | 
| 256 | 
  | 
  | 
      // Compute average L, dL/da, dL/db. | 
| 257 | 
  | 
  | 
      RealType lenAverage = (RealType)0; | 
| 258 | 
  | 
  | 
      Vector<RealType, 2> derLenAverage = Vector<RealType, 2>(0.0); | 
| 259 | 
  | 
  | 
      for (i0 = 0; i0 < numPoints; ++i0) { | 
| 260 | 
  | 
  | 
        Vector<RealType, 2> diff = points[i0] - center; | 
| 261 | 
  | 
  | 
        RealType length = diff.length(); | 
| 262 | 
  | 
  | 
        if (length > 1e-6) { | 
| 263 | 
  | 
  | 
          lenAverage += length; | 
| 264 | 
  | 
  | 
          RealType invLength = ((RealType)1)/length; | 
| 265 | 
  | 
  | 
          derLenAverage -= invLength*diff; | 
| 266 | 
  | 
  | 
        } | 
| 267 | 
  | 
  | 
      } | 
| 268 | 
  | 
  | 
      lenAverage *= invNumPoints; | 
| 269 | 
  | 
  | 
      derLenAverage *= invNumPoints; | 
| 270 | 
  | 
  | 
 | 
| 271 | 
  | 
  | 
      center = average + lenAverage*derLenAverage; | 
| 272 | 
  | 
  | 
      radius = lenAverage; | 
| 273 | 
  | 
  | 
 | 
| 274 | 
  | 
  | 
      Vector<RealType, 2> diff = center - current; | 
| 275 | 
  | 
  | 
      if (fabs(diff[0]) <= 1e-6 &&  fabs(diff[1]) <= 1e-6) { | 
| 276 | 
  | 
  | 
        break; | 
| 277 | 
  | 
  | 
      } | 
| 278 | 
  | 
  | 
    } | 
| 279 | 
  | 
  | 
 | 
| 280 | 
  | 
  | 
    RealType zCen = center[1]; | 
| 281 | 
  | 
  | 
    RealType rDrop = radius; | 
| 282 | 
  | 
  | 
    RealType ca; | 
| 283 | 
  | 
  | 
 | 
| 284 | 
  | 
  | 
    if (fabs(zCen) > rDrop) { | 
| 285 | 
  | 
  | 
      ca = 180.0; | 
| 286 | 
  | 
  | 
    } else { | 
| 287 | 
  | 
  | 
     | 
| 288 | 
  | 
  | 
      if (zCen >= 0.0) { | 
| 289 | 
  | 
  | 
        ca = 90.0 + asin(zCen/rDrop)*(180.0/M_PI); | 
| 290 | 
  | 
  | 
      } else { | 
| 291 | 
  | 
  | 
        ca = 90 - asin(zCen/rDrop)*(180.0/M_PI); | 
| 292 | 
  | 
  | 
      } | 
| 293 | 
  | 
  | 
    } | 
| 294 | 
  | 
  | 
 | 
| 295 | 
  | 
  | 
    values_.push_back( ca ); | 
| 296 | 
  | 
  | 
     | 
| 297 | 
gezelter | 
2035 | 
  }    | 
| 298 | 
  | 
  | 
} | 
| 299 | 
  | 
  | 
 | 
| 300 | 
  | 
  | 
 |