1 |
/* Copyright (c) 2006 The University of Notre Dame. All Rights Reserved. |
2 |
* |
3 |
* The University of Notre Dame grants you ("Licensee") a |
4 |
* non-exclusive, royalty free, license to use, modify and |
5 |
* redistribute this software in source and binary code form, provided |
6 |
* that the following conditions are met: |
7 |
* |
8 |
* 1. Redistributions of source code must retain the above copyright |
9 |
* notice, this list of conditions and the following disclaimer. |
10 |
* |
11 |
* 2. Redistributions in binary form must reproduce the above copyright |
12 |
* notice, this list of conditions and the following disclaimer in the |
13 |
* documentation and/or other materials provided with the |
14 |
* distribution. |
15 |
* |
16 |
* This software is provided "AS IS," without a warranty of any |
17 |
* kind. All express or implied conditions, representations and |
18 |
* warranties, including any implied warranty of merchantability, |
19 |
* fitness for a particular purpose or non-infringement, are hereby |
20 |
* excluded. The University of Notre Dame and its licensors shall not |
21 |
* be liable for any damages suffered by licensee as a result of |
22 |
* using, modifying or distributing the software or its |
23 |
* derivatives. In no event will the University of Notre Dame or its |
24 |
* licensors be liable for any lost revenue, profit or data, or for |
25 |
* direct, indirect, special, consequential, incidental or punitive |
26 |
* damages, however caused and regardless of the theory of liability, |
27 |
* arising out of the use of or inability to use software, even if the |
28 |
* University of Notre Dame has been advised of the possibility of |
29 |
* such damages. |
30 |
* |
31 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
32 |
* research, please cite the appropriate papers when you publish your |
33 |
* work. Good starting points are: |
34 |
* |
35 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
36 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
37 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
38 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
39 |
* [4] , Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). * |
40 |
* |
41 |
* randomBuilder.cpp |
42 |
* |
43 |
* Created by Charles F. Vardeman II on 10 Apr 2006. |
44 |
* @author Charles F. Vardeman II |
45 |
* @version $Id$ |
46 |
* |
47 |
*/ |
48 |
|
49 |
|
50 |
#include <cstdlib> |
51 |
#include <cstdio> |
52 |
#include <cstring> |
53 |
#include <cmath> |
54 |
#include <iostream> |
55 |
#include <string> |
56 |
#include <map> |
57 |
#include <fstream> |
58 |
|
59 |
#include "applications/randomBuilder/randomBuilderCmd.h" |
60 |
#include "lattice/LatticeFactory.hpp" |
61 |
#include "utils/MoLocator.hpp" |
62 |
#include "lattice/Lattice.hpp" |
63 |
#include "brains/Register.hpp" |
64 |
#include "brains/SimInfo.hpp" |
65 |
#include "brains/SimCreator.hpp" |
66 |
#include "io/DumpWriter.hpp" |
67 |
#include "math/Vector3.hpp" |
68 |
#include "math/SquareMatrix3.hpp" |
69 |
#include "utils/StringUtils.hpp" |
70 |
|
71 |
using namespace std; |
72 |
using namespace OpenMD; |
73 |
|
74 |
void createMdFile(const std::string&oldMdFileName, |
75 |
const std::string&newMdFileName, |
76 |
std::vector<int> nMol); |
77 |
|
78 |
int main(int argc, char *argv []) { |
79 |
|
80 |
registerLattice(); |
81 |
|
82 |
gengetopt_args_info args_info; |
83 |
std::string latticeType; |
84 |
std::string inputFileName; |
85 |
std::string outputFileName; |
86 |
Lattice *simpleLat; |
87 |
RealType latticeConstant; |
88 |
std::vector<RealType> lc; |
89 |
const RealType rhoConvertConst = 1.661; |
90 |
RealType density; |
91 |
int nx, ny, nz; |
92 |
Mat3x3d hmat; |
93 |
MoLocator *locator; |
94 |
std::vector<Vector3d> latticePos; |
95 |
std::vector<Vector3d> latticeOrt; |
96 |
int nMolPerCell; |
97 |
DumpWriter *writer; |
98 |
|
99 |
// parse command line arguments |
100 |
if (cmdline_parser(argc, argv, &args_info) != 0) |
101 |
exit(1); |
102 |
|
103 |
density = args_info.density_arg; |
104 |
|
105 |
//get lattice type |
106 |
latticeType = "FCC"; |
107 |
|
108 |
simpleLat = LatticeFactory::getInstance()->createLattice(latticeType); |
109 |
|
110 |
if (simpleLat == NULL) { |
111 |
sprintf(painCave.errMsg, "Lattice Factory can not create %s lattice\n", |
112 |
latticeType.c_str()); |
113 |
painCave.isFatal = 1; |
114 |
simError(); |
115 |
} |
116 |
nMolPerCell = simpleLat->getNumSitesPerCell(); |
117 |
|
118 |
//get the number of unit cells in each direction: |
119 |
|
120 |
nx = args_info.nx_arg; |
121 |
|
122 |
if (nx <= 0) { |
123 |
sprintf(painCave.errMsg, "The number of unit cells in the x direction " |
124 |
"must be greater than 0."); |
125 |
painCave.isFatal = 1; |
126 |
simError(); |
127 |
} |
128 |
|
129 |
ny = args_info.ny_arg; |
130 |
|
131 |
if (ny <= 0) { |
132 |
sprintf(painCave.errMsg, "The number of unit cells in the y direction " |
133 |
"must be greater than 0."); |
134 |
painCave.isFatal = 1; |
135 |
simError(); |
136 |
} |
137 |
|
138 |
nz = args_info.nz_arg; |
139 |
|
140 |
if (nz <= 0) { |
141 |
sprintf(painCave.errMsg, "The number of unit cells in the z direction " |
142 |
"must be greater than 0."); |
143 |
painCave.isFatal = 1; |
144 |
simError(); |
145 |
} |
146 |
|
147 |
int nSites = nMolPerCell * nx * ny * nz; |
148 |
|
149 |
//get input file name |
150 |
if (args_info.inputs_num) |
151 |
inputFileName = args_info.inputs[0]; |
152 |
else { |
153 |
sprintf(painCave.errMsg, "No input .md file name was specified " |
154 |
"on the command line"); |
155 |
painCave.isFatal = 1; |
156 |
simError(); |
157 |
} |
158 |
|
159 |
//parse md file and set up the system |
160 |
|
161 |
SimCreator oldCreator; |
162 |
SimInfo* oldInfo = oldCreator.createSim(inputFileName, false); |
163 |
Globals* simParams = oldInfo->getSimParams(); |
164 |
|
165 |
// Calculate lattice constant (in Angstroms) |
166 |
|
167 |
std::vector<Component*> components = simParams->getComponents(); |
168 |
std::vector<RealType> molFractions; |
169 |
std::vector<RealType> molecularMasses; |
170 |
std::vector<int> nMol; |
171 |
int nComponents = components.size(); |
172 |
|
173 |
if (nComponents == 1) { |
174 |
molFractions.push_back(1.0); |
175 |
} else { |
176 |
if (args_info.molFraction_given == nComponents) { |
177 |
for (int i = 0; i < nComponents; i++) { |
178 |
molFractions.push_back(args_info.molFraction_arg[i]); |
179 |
} |
180 |
} else if (args_info.molFraction_given == nComponents-1) { |
181 |
RealType remainingFraction = 1.0; |
182 |
for (int i = 0; i < nComponents-1; i++) { |
183 |
molFractions.push_back(args_info.molFraction_arg[i]); |
184 |
remainingFraction -= molFractions[i]; |
185 |
} |
186 |
molFractions.push_back(remainingFraction); |
187 |
} else { |
188 |
sprintf(painCave.errMsg, "randomBuilder can't figure out molFractions " |
189 |
"for all of the components in the <MetaData> block."); |
190 |
painCave.isFatal = 1; |
191 |
simError(); |
192 |
} |
193 |
} |
194 |
|
195 |
// do some sanity checking: |
196 |
|
197 |
RealType totalFraction = 0.0; |
198 |
|
199 |
for (int i = 0; i < nComponents; i++) { |
200 |
if (molFractions.at(i) < 0.0) { |
201 |
sprintf(painCave.errMsg, "One of the requested molFractions was" |
202 |
" less than zero!"); |
203 |
painCave.isFatal = 1; |
204 |
simError(); |
205 |
} |
206 |
if (molFractions.at(i) > 1.0) { |
207 |
sprintf(painCave.errMsg, "One of the requested molFractions was" |
208 |
" greater than one!"); |
209 |
painCave.isFatal = 1; |
210 |
simError(); |
211 |
} |
212 |
totalFraction += molFractions.at(i); |
213 |
} |
214 |
if (abs(totalFraction - 1.0) > 1e-6) { |
215 |
sprintf(painCave.errMsg, "The sum of molFractions was not close enough to 1.0"); |
216 |
painCave.isFatal = 1; |
217 |
simError(); |
218 |
} |
219 |
|
220 |
int remaining = nSites; |
221 |
for (int i=0; i < nComponents-1; i++) { |
222 |
nMol.push_back(int((RealType)nSites * molFractions.at(i))); |
223 |
remaining -= nMol.at(i); |
224 |
} |
225 |
nMol.push_back(remaining); |
226 |
|
227 |
// recompute actual mol fractions and perform final sanity check: |
228 |
|
229 |
int totalMolecules = 0; |
230 |
RealType totalMass = 0.0; |
231 |
for (int i=0; i < nComponents; i++) { |
232 |
molFractions[i] = (RealType)(nMol.at(i))/(RealType)nSites; |
233 |
totalMolecules += nMol.at(i); |
234 |
molecularMasses.push_back(MoLocator::getMolMass(oldInfo->getMoleculeStamp(i), |
235 |
oldInfo->getForceField())); |
236 |
totalMass += (RealType)(nMol.at(i)) * molecularMasses.at(i); |
237 |
} |
238 |
RealType avgMass = totalMass / (RealType) totalMolecules; |
239 |
|
240 |
if (totalMolecules != nSites) { |
241 |
sprintf(painCave.errMsg, "Computed total number of molecules is not equal " |
242 |
"to the number of lattice sites!"); |
243 |
painCave.isFatal = 1; |
244 |
simError(); |
245 |
} |
246 |
|
247 |
latticeConstant = pow(rhoConvertConst * nMolPerCell * avgMass / density, |
248 |
(RealType)(1.0 / 3.0)); |
249 |
|
250 |
// Set the lattice constant |
251 |
|
252 |
lc.push_back(latticeConstant); |
253 |
simpleLat->setLatticeConstant(lc); |
254 |
|
255 |
// Calculate the lattice sites and fill the lattice vector. |
256 |
|
257 |
// Get the standard orientations of the cell sites |
258 |
|
259 |
latticeOrt = simpleLat->getLatticePointsOrt(); |
260 |
|
261 |
vector<Vector3d> sites; |
262 |
vector<Vector3d> orientations; |
263 |
|
264 |
for(int i = 0; i < nx; i++) { |
265 |
for(int j = 0; j < ny; j++) { |
266 |
for(int k = 0; k < nz; k++) { |
267 |
|
268 |
// Get the position of the cell sites |
269 |
|
270 |
simpleLat->getLatticePointsPos(latticePos, i, j, k); |
271 |
|
272 |
for(int l = 0; l < nMolPerCell; l++) { |
273 |
sites.push_back(latticePos[l]); |
274 |
orientations.push_back(latticeOrt[l]); |
275 |
} |
276 |
} |
277 |
} |
278 |
} |
279 |
|
280 |
outputFileName = args_info.output_arg; |
281 |
|
282 |
// create a new .md file on the fly which corrects the number of molecules |
283 |
|
284 |
createMdFile(inputFileName, outputFileName, nMol); |
285 |
|
286 |
delete oldInfo; |
287 |
|
288 |
// We need to read in the new SimInfo object, then Parse the |
289 |
// md file and set up the system |
290 |
|
291 |
SimCreator newCreator; |
292 |
SimInfo* newInfo = newCreator.createSim(outputFileName, false); |
293 |
|
294 |
// fill Hmat |
295 |
|
296 |
hmat(0, 0) = nx * latticeConstant; |
297 |
hmat(0, 1) = 0.0; |
298 |
hmat(0, 2) = 0.0; |
299 |
|
300 |
hmat(1, 0) = 0.0; |
301 |
hmat(1, 1) = ny * latticeConstant; |
302 |
hmat(1, 2) = 0.0; |
303 |
|
304 |
hmat(2, 0) = 0.0; |
305 |
hmat(2, 1) = 0.0; |
306 |
hmat(2, 2) = nz * latticeConstant; |
307 |
|
308 |
// Set Hmat |
309 |
|
310 |
newInfo->getSnapshotManager()->getCurrentSnapshot()->setHmat(hmat); |
311 |
|
312 |
// place the molecules |
313 |
|
314 |
// Randomize a vector of ints: |
315 |
|
316 |
vector<int> ids; |
317 |
for (unsigned int i = 0; i < sites.size(); i++) ids.push_back(i); |
318 |
std::random_shuffle(ids.begin(), ids.end()); |
319 |
|
320 |
Molecule* mol; |
321 |
int l = 0; |
322 |
for (int i = 0; i < nComponents; i++){ |
323 |
locator = new MoLocator(newInfo->getMoleculeStamp(i), |
324 |
newInfo->getForceField()); |
325 |
for (int n = 0; n < nMol.at(i); n++) { |
326 |
mol = newInfo->getMoleculeByGlobalIndex(l); |
327 |
locator->placeMol(sites[ids[l]], orientations[ids[l]], mol); |
328 |
l++; |
329 |
} |
330 |
} |
331 |
|
332 |
// Create DumpWriter and write out the coordinates |
333 |
|
334 |
writer = new DumpWriter(newInfo, outputFileName); |
335 |
|
336 |
if (writer == NULL) { |
337 |
sprintf(painCave.errMsg, "error in creating DumpWriter"); |
338 |
painCave.isFatal = 1; |
339 |
simError(); |
340 |
} |
341 |
|
342 |
writer->writeDump(); |
343 |
|
344 |
// deleting the writer will put the closing at the end of the dump file. |
345 |
|
346 |
delete writer; |
347 |
|
348 |
sprintf(painCave.errMsg, "A new OpenMD file called \"%s\" has been " |
349 |
"generated.\n", outputFileName.c_str()); |
350 |
painCave.isFatal = 0; |
351 |
painCave.severity = OPENMD_INFO; |
352 |
simError(); |
353 |
return 0; |
354 |
} |
355 |
|
356 |
void createMdFile(const std::string&oldMdFileName, |
357 |
const std::string&newMdFileName, |
358 |
std::vector<int> nMol) { |
359 |
ifstream oldMdFile; |
360 |
ofstream newMdFile; |
361 |
const int MAXLEN = 65535; |
362 |
char buffer[MAXLEN]; |
363 |
|
364 |
//create new .md file based on old .md file |
365 |
|
366 |
oldMdFile.open(oldMdFileName.c_str()); |
367 |
newMdFile.open(newMdFileName.c_str()); |
368 |
|
369 |
oldMdFile.getline(buffer, MAXLEN); |
370 |
|
371 |
unsigned int i = 0; |
372 |
while (!oldMdFile.eof()) { |
373 |
|
374 |
//correct molecule number |
375 |
if (strstr(buffer, "nMol") != NULL) { |
376 |
if (i<nMol.size()){ |
377 |
sprintf(buffer, "\tnMol = %i;", nMol.at(i)); |
378 |
newMdFile << buffer << std::endl; |
379 |
i++; |
380 |
} |
381 |
} else |
382 |
newMdFile << buffer << std::endl; |
383 |
|
384 |
oldMdFile.getline(buffer, MAXLEN); |
385 |
} |
386 |
|
387 |
oldMdFile.close(); |
388 |
newMdFile.close(); |
389 |
|
390 |
if (i != nMol.size()) { |
391 |
sprintf(painCave.errMsg, "Couldn't replace the correct number of nMol\n" |
392 |
"\tstatements in component blocks. Make sure that all\n" |
393 |
"\tcomponents in the template file have nMol=1"); |
394 |
painCave.isFatal = 1; |
395 |
simError(); |
396 |
} |
397 |
|
398 |
} |
399 |
|