1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
* Created by Kelsey M. Stocker on 4/5/12. |
42 |
* @author Kelsey M. Stocker |
43 |
* |
44 |
*/ |
45 |
|
46 |
|
47 |
|
48 |
#include <cstdlib> |
49 |
#include <cstdio> |
50 |
#include <cstring> |
51 |
#include <cmath> |
52 |
#include <iostream> |
53 |
#include <string> |
54 |
#include <map> |
55 |
#include <fstream> |
56 |
#include <algorithm> |
57 |
|
58 |
#include "config.h" |
59 |
#include "shapedLatticePentRod.hpp" |
60 |
#include "nanorod_pentBuilderCmd.h" |
61 |
#include "shapedLatticeRod.hpp" |
62 |
#include "lattice/LatticeFactory.hpp" |
63 |
#include "utils/MoLocator.hpp" |
64 |
#include "lattice/Lattice.hpp" |
65 |
#include "brains/Register.hpp" |
66 |
#include "brains/SimInfo.hpp" |
67 |
#include "brains/SimCreator.hpp" |
68 |
#include "io/DumpWriter.hpp" |
69 |
#include "math/SquareMatrix3.hpp" |
70 |
#include "utils/StringUtils.hpp" |
71 |
|
72 |
using namespace std; |
73 |
using namespace OpenMD; |
74 |
void createMdFile(const std::string&oldMdFileName, |
75 |
const std::string&newMdFileName, |
76 |
std::vector<int> numMol); |
77 |
|
78 |
int main(int argc, char *argv []) { |
79 |
|
80 |
registerLattice(); |
81 |
|
82 |
gengetopt_args_info args_info; |
83 |
std::string latticeType; |
84 |
std::string inputFileName; |
85 |
std::string outputFileName; |
86 |
MoLocator* locator; |
87 |
int nComponents; |
88 |
double latticeConstant; |
89 |
RealType rodRadius; |
90 |
RealType rodLength; |
91 |
Mat3x3d hmat; |
92 |
DumpWriter *writer; |
93 |
|
94 |
// Parse Command Line Arguments |
95 |
if (cmdline_parser(argc, argv, &args_info) != 0) |
96 |
exit(1); |
97 |
|
98 |
/* get lattice type */ |
99 |
latticeType = "FCC"; |
100 |
|
101 |
/* get input file name */ |
102 |
if (args_info.inputs_num) |
103 |
inputFileName = args_info.inputs[0]; |
104 |
else { |
105 |
sprintf(painCave.errMsg, "No input .md file name was specified " |
106 |
"on the command line"); |
107 |
painCave.isFatal = 1; |
108 |
cmdline_parser_print_help(); |
109 |
simError(); |
110 |
} |
111 |
|
112 |
/* parse md file and set up the system */ |
113 |
SimCreator oldCreator; |
114 |
SimInfo* oldInfo = oldCreator.createSim(inputFileName, false); |
115 |
|
116 |
latticeConstant = args_info.latticeConstant_arg; |
117 |
rodRadius = args_info.radius_arg; |
118 |
rodLength = args_info.length_arg; |
119 |
Globals* simParams = oldInfo->getSimParams(); |
120 |
|
121 |
/* Create nanorod */ |
122 |
shapedLatticePentRod nanoRod(latticeConstant, latticeType, |
123 |
rodRadius, rodLength); |
124 |
|
125 |
/* Build a lattice and get lattice points for this lattice constant */ |
126 |
|
127 |
//Rotation angles for lattice |
128 |
RealType phi, theta, psi; |
129 |
|
130 |
// RealType cphi, sphi, ctheta, stheta, cpsi, spsi; |
131 |
|
132 |
/* |
133 |
RealType cphi, sphi, ctheta, stheta, cpsi, spsi; |
134 |
|
135 |
cphi = cos(phi); |
136 |
sphi = sin(phi); |
137 |
ctheta = cos(theta); |
138 |
stheta = sin(theta); |
139 |
cpsi = cos(psi); |
140 |
spsi = sin(psi); |
141 |
*/ |
142 |
|
143 |
//Rotates 45 degrees about z-axis |
144 |
RotMat3x3d rotation45( 45.0 * M_PI / 180.0, 0.0, 0.0); |
145 |
|
146 |
/*rotation45[0][0] = sqrt(2)/2; |
147 |
rotation45[0][1] = -sqrt(2)/2; |
148 |
rotation45[0][2] = 0; |
149 |
rotation45[1][0] = sqrt(2)/2; |
150 |
rotation45[1][1] = sqrt(2)/2; |
151 |
rotation45[1][2] = 0; |
152 |
rotation45[2][0] = 0; |
153 |
rotation45[2][1] = 0; |
154 |
rotation45[2][2] = 1;*/ |
155 |
|
156 |
phi = 0.0; |
157 |
theta = 72 * M_PI / 180.0; |
158 |
psi = 0.0; |
159 |
|
160 |
//Rotates 72 degrees about y-axis |
161 |
RotMat3x3d rotation72(phi, theta, psi); |
162 |
|
163 |
/*rotation72[0][0] = sqrt(5)/4 - 0.25; |
164 |
rotation72[0][1] = 0; |
165 |
rotation72[0][2] = sqrt(2*(sqrt(5) + 5))/4; |
166 |
rotation72[1][0] = 0; |
167 |
rotation72[1][1] = 1; |
168 |
rotation72[1][2] = 0; |
169 |
rotation72[2][0] = -sqrt(2*(sqrt(5) + 5))/4; |
170 |
rotation72[2][1] = 0; |
171 |
rotation72[2][2] = sqrt(5)/4 - 0.25;*/ |
172 |
|
173 |
vector<Vector3d> getsites = nanoRod.getSites(); |
174 |
vector<Vector3d> getorientations = nanoRod.getOrientations(); |
175 |
vector<Vector3d> sites; |
176 |
vector<Vector3d> orientations; |
177 |
|
178 |
for (unsigned int index = 0; index < getsites.size(); index++) { |
179 |
Vector3d mySite = getsites[index]; |
180 |
Vector3d myOrient = getorientations[index]; |
181 |
Vector3d mySite2 = rotation45 * mySite; |
182 |
Vector3d o2 = rotation45 * myOrient; |
183 |
sites.push_back( mySite2 ); |
184 |
orientations.push_back( o2 ); |
185 |
|
186 |
mySite2 = rotation72 * mySite2; |
187 |
o2 = rotation72 * o2; |
188 |
sites.push_back( mySite2 ); |
189 |
orientations.push_back( o2 ); |
190 |
|
191 |
mySite2 = rotation72 * mySite2; |
192 |
o2 = rotation72 * o2; |
193 |
sites.push_back( mySite2 ); |
194 |
orientations.push_back( o2 ); |
195 |
|
196 |
mySite2 = rotation72 * mySite2; |
197 |
o2 = rotation72 * o2; |
198 |
sites.push_back( mySite2 ); |
199 |
orientations.push_back( o2 ); |
200 |
|
201 |
mySite2 = rotation72 * mySite2; |
202 |
o2 = rotation72 * o2; |
203 |
sites.push_back( mySite2 ); |
204 |
orientations.push_back( o2 ); |
205 |
} |
206 |
|
207 |
int nCenter = int( (rodLength + 1.154700538*rodRadius)/2.88 ); |
208 |
|
209 |
for (unsigned int index = 0; index <= 0.5*nCenter; index++) { |
210 |
Vector3d myLoc_top(2.88*index, 0.0, 0.0); |
211 |
sites.push_back(myLoc_top); |
212 |
orientations.push_back(Vector3d(0.0)); |
213 |
} |
214 |
|
215 |
for (unsigned int index = 1; index <= 0.5*nCenter; index++) { |
216 |
Vector3d myLoc_bottom(-2.88*index, 0.0, 0.0); |
217 |
sites.push_back(myLoc_bottom); |
218 |
orientations.push_back(Vector3d(0.0)); |
219 |
} |
220 |
|
221 |
std::vector<int> vacancyTargets; |
222 |
vector<bool> isVacancy; |
223 |
|
224 |
Vector3d myLoc; |
225 |
RealType myR; |
226 |
|
227 |
for (unsigned int i = 0; i < sites.size(); i++) |
228 |
isVacancy.push_back(false); |
229 |
|
230 |
// cerr << "checking vacancyPercent" << "\n"; |
231 |
if (args_info.vacancyPercent_given) { |
232 |
// cerr << "vacancyPercent given" << "\n"; |
233 |
if (args_info.vacancyPercent_arg < 0.0 || args_info.vacancyPercent_arg > 100.0) { |
234 |
sprintf(painCave.errMsg, "vacancyPercent was set to a non-sensical value."); |
235 |
painCave.isFatal = 1; |
236 |
simError(); |
237 |
} else { |
238 |
RealType vF = args_info.vacancyPercent_arg / 100.0; |
239 |
// cerr << "vacancyPercent = " << vF << "\n"; |
240 |
RealType vIR; |
241 |
RealType vOR; |
242 |
if (args_info.vacancyInnerRadius_given) { |
243 |
vIR = args_info.vacancyInnerRadius_arg; |
244 |
} else { |
245 |
vIR = 0.0; |
246 |
} |
247 |
if (args_info.vacancyOuterRadius_given) { |
248 |
vOR = args_info.vacancyOuterRadius_arg; |
249 |
} else { |
250 |
vOR = rodRadius; |
251 |
} |
252 |
if (vIR >= 0.0 && vOR <= rodRadius && vOR >= vIR) { |
253 |
|
254 |
for (unsigned int i = 0; i < sites.size(); i++) { |
255 |
myLoc = sites[i]; |
256 |
myR = myLoc.length(); |
257 |
if (myR >= vIR && myR <= vOR) { |
258 |
vacancyTargets.push_back(i); |
259 |
} |
260 |
} |
261 |
std::random_shuffle(vacancyTargets.begin(), vacancyTargets.end()); |
262 |
|
263 |
int nTargets = vacancyTargets.size(); |
264 |
vacancyTargets.resize((int)(vF * nTargets)); |
265 |
|
266 |
|
267 |
sprintf(painCave.errMsg, "Removing %d atoms from randomly-selected\n" |
268 |
"\tsites between %lf and %lf.", (int) vacancyTargets.size(), |
269 |
vIR, vOR); |
270 |
painCave.isFatal = 0; |
271 |
simError(); |
272 |
|
273 |
isVacancy.clear(); |
274 |
for (unsigned int i = 0; i < sites.size(); i++) { |
275 |
bool vac = false; |
276 |
for (unsigned int j = 0; j < vacancyTargets.size(); j++) { |
277 |
if (i == vacancyTargets[j]) vac = true; |
278 |
} |
279 |
isVacancy.push_back(vac); |
280 |
} |
281 |
|
282 |
} else { |
283 |
sprintf(painCave.errMsg, "Something is strange about the vacancy\n" |
284 |
"\tinner or outer radii. Check their values."); |
285 |
painCave.isFatal = 1; |
286 |
simError(); |
287 |
} |
288 |
} |
289 |
} |
290 |
|
291 |
/* Get number of lattice sites */ |
292 |
int nSites = sites.size() - vacancyTargets.size(); |
293 |
|
294 |
// cerr << "sites.size() = " << sites.size() << "\n"; |
295 |
// cerr << "nSites = " << nSites << "\n"; |
296 |
// cerr << "vacancyTargets = " << vacancyTargets.size() << "\n"; |
297 |
|
298 |
std::vector<Component*> components = simParams->getComponents(); |
299 |
std::vector<RealType> molFractions; |
300 |
std::vector<RealType> shellRadii; |
301 |
std::vector<int> nMol; |
302 |
std::map<int, int> componentFromSite; |
303 |
nComponents = components.size(); |
304 |
// cerr << "nComponents = " << nComponents << "\n"; |
305 |
|
306 |
if (args_info.molFraction_given && args_info.shellRadius_given) { |
307 |
sprintf(painCave.errMsg, "Specify either molFraction or shellRadius " |
308 |
"arguments, but not both!"); |
309 |
painCave.isFatal = 1; |
310 |
simError(); |
311 |
} |
312 |
|
313 |
if (nComponents == 1) { |
314 |
molFractions.push_back(1.0); |
315 |
shellRadii.push_back(rodRadius); |
316 |
} else if (args_info.molFraction_given) { |
317 |
if ((int)args_info.molFraction_given == nComponents) { |
318 |
for (int i = 0; i < nComponents; i++) { |
319 |
molFractions.push_back(args_info.molFraction_arg[i]); |
320 |
} |
321 |
} else if ((int)args_info.molFraction_given == nComponents-1) { |
322 |
RealType remainingFraction = 1.0; |
323 |
for (int i = 0; i < nComponents-1; i++) { |
324 |
molFractions.push_back(args_info.molFraction_arg[i]); |
325 |
remainingFraction -= molFractions[i]; |
326 |
} |
327 |
molFractions.push_back(remainingFraction); |
328 |
} else { |
329 |
sprintf(painCave.errMsg, "nanorodBuilder can't figure out molFractions " |
330 |
"for all of the components in the <MetaData> block."); |
331 |
painCave.isFatal = 1; |
332 |
simError(); |
333 |
} |
334 |
} else if ((int)args_info.shellRadius_given) { |
335 |
if ((int)args_info.shellRadius_given == nComponents) { |
336 |
for (int i = 0; i < nComponents; i++) { |
337 |
shellRadii.push_back(args_info.shellRadius_arg[i]); |
338 |
} |
339 |
} else if ((int)args_info.shellRadius_given == nComponents-1) { |
340 |
for (int i = 0; i < nComponents-1; i++) { |
341 |
shellRadii.push_back(args_info.shellRadius_arg[i]); |
342 |
} |
343 |
shellRadii.push_back(rodRadius); |
344 |
} else { |
345 |
sprintf(painCave.errMsg, "nanorodBuilder can't figure out the\n" |
346 |
"\tshell radii for all of the components in the <MetaData> block."); |
347 |
painCave.isFatal = 1; |
348 |
simError(); |
349 |
} |
350 |
} else { |
351 |
sprintf(painCave.errMsg, "You have a multi-component <MetaData> block,\n" |
352 |
"\tbut have not specified either molFraction or shellRadius arguments."); |
353 |
painCave.isFatal = 1; |
354 |
simError(); |
355 |
} |
356 |
|
357 |
if (args_info.molFraction_given) { |
358 |
RealType totalFraction = 0.0; |
359 |
|
360 |
/* Do some simple sanity checking*/ |
361 |
|
362 |
for (int i = 0; i < nComponents; i++) { |
363 |
if (molFractions.at(i) < 0.0) { |
364 |
sprintf(painCave.errMsg, "One of the requested molFractions was" |
365 |
" less than zero!"); |
366 |
painCave.isFatal = 1; |
367 |
simError(); |
368 |
} |
369 |
if (molFractions.at(i) > 1.0) { |
370 |
sprintf(painCave.errMsg, "One of the requested molFractions was" |
371 |
" greater than one!"); |
372 |
painCave.isFatal = 1; |
373 |
simError(); |
374 |
} |
375 |
totalFraction += molFractions.at(i); |
376 |
} |
377 |
if (abs(totalFraction - 1.0) > 1e-6) { |
378 |
sprintf(painCave.errMsg, "The sum of molFractions was not close enough to 1.0"); |
379 |
painCave.isFatal = 1; |
380 |
simError(); |
381 |
} |
382 |
|
383 |
int remaining = nSites; |
384 |
for (int i=0; i < nComponents-1; i++) { |
385 |
nMol.push_back(int((RealType)nSites * molFractions.at(i))); |
386 |
remaining -= nMol.at(i); |
387 |
} |
388 |
nMol.push_back(remaining); |
389 |
|
390 |
// recompute actual mol fractions and perform final sanity check: |
391 |
|
392 |
int totalMolecules = 0; |
393 |
for (int i=0; i < nComponents; i++) { |
394 |
molFractions[i] = (RealType)(nMol.at(i))/(RealType)nSites; |
395 |
totalMolecules += nMol.at(i); |
396 |
} |
397 |
if (totalMolecules != nSites) { |
398 |
sprintf(painCave.errMsg, "Computed total number of molecules is not equal " |
399 |
"to the number of lattice sites!"); |
400 |
painCave.isFatal = 1; |
401 |
simError(); |
402 |
} |
403 |
} else { |
404 |
|
405 |
for (unsigned int i = 0; i < shellRadii.size(); i++) { |
406 |
if (shellRadii.at(i) > rodRadius + 1e-6 ) { |
407 |
sprintf(painCave.errMsg, "One of the shellRadius values exceeds the rod Radius."); |
408 |
painCave.isFatal = 1; |
409 |
simError(); |
410 |
} |
411 |
if (shellRadii.at(i) <= 0.0 ) { |
412 |
sprintf(painCave.errMsg, "One of the shellRadius values is smaller than zero!"); |
413 |
painCave.isFatal = 1; |
414 |
simError(); |
415 |
} |
416 |
} |
417 |
} |
418 |
|
419 |
vector<int> ids; |
420 |
if ((int)args_info.molFraction_given){ |
421 |
// cerr << "molFraction given 2" << "\n"; |
422 |
sprintf(painCave.errMsg, "Creating a randomized spherically-capped nanorod."); |
423 |
painCave.isFatal = 0; |
424 |
simError(); |
425 |
/* Random rod is the default case*/ |
426 |
|
427 |
for (unsigned int i = 0; i < sites.size(); i++) |
428 |
if (!isVacancy[i]) ids.push_back(i); |
429 |
|
430 |
std::random_shuffle(ids.begin(), ids.end()); |
431 |
|
432 |
} else{ |
433 |
sprintf(painCave.errMsg, "Creating an fcc nanorod."); |
434 |
painCave.isFatal = 0; |
435 |
simError(); |
436 |
|
437 |
// RealType smallestSoFar; |
438 |
int myComponent = -1; |
439 |
nMol.clear(); |
440 |
nMol.resize(nComponents); |
441 |
|
442 |
// cerr << "shellRadii[0] " << shellRadii[0] << "\n"; |
443 |
// cerr << "rodRadius " << rodRadius << "\n"; |
444 |
|
445 |
for (unsigned int i = 0; i < sites.size(); i++) { |
446 |
myLoc = sites[i]; |
447 |
myR = myLoc.length(); |
448 |
// smallestSoFar = rodRadius; |
449 |
// cerr << "vac = " << isVacancy[i]<< "\n"; |
450 |
|
451 |
if (!isVacancy[i]) { |
452 |
|
453 |
|
454 |
// for (int j = 0; j < nComponents; j++) { |
455 |
// if (myR <= shellRadii[j]) { |
456 |
// if (shellRadii[j] <= smallestSoFar) { |
457 |
// smallestSoFar = shellRadii[j]; |
458 |
// myComponent = j; |
459 |
// } |
460 |
// } |
461 |
// } |
462 |
myComponent = 0; |
463 |
componentFromSite[i] = myComponent; |
464 |
nMol[myComponent]++; |
465 |
// cerr << "nMol for myComp(" << myComponent<<") = " << nMol[myComponent] << "\n"; |
466 |
} |
467 |
} |
468 |
} |
469 |
// cerr << "nMol = " << nMol.at(0) << "\n"; |
470 |
|
471 |
outputFileName = args_info.output_arg; |
472 |
|
473 |
//creat new .md file on fly which corrects the number of molecule |
474 |
|
475 |
createMdFile(inputFileName, outputFileName, nMol); |
476 |
|
477 |
delete oldInfo; |
478 |
|
479 |
SimCreator newCreator; |
480 |
SimInfo* NewInfo = newCreator.createSim(outputFileName, false); |
481 |
|
482 |
// Place molecules |
483 |
Molecule* mol; |
484 |
SimInfo::MoleculeIterator mi; |
485 |
mol = NewInfo->beginMolecule(mi); |
486 |
|
487 |
int l = 0; |
488 |
|
489 |
for (int i = 0; i < nComponents; i++){ |
490 |
locator = new MoLocator(NewInfo->getMoleculeStamp(i), |
491 |
NewInfo->getForceField()); |
492 |
|
493 |
// cerr << "nMol = " << nMol.at(i) << "\n"; |
494 |
if (!args_info.molFraction_given) { |
495 |
for (unsigned int n = 0; n < sites.size(); n++) { |
496 |
if (!isVacancy[n]) { |
497 |
if (componentFromSite[n] == i) { |
498 |
mol = NewInfo->getMoleculeByGlobalIndex(l); |
499 |
locator->placeMol(sites[n], orientations[n], mol); |
500 |
l++; |
501 |
} |
502 |
} |
503 |
} |
504 |
} else { |
505 |
for (int n = 0; n < nMol.at(i); n++) { |
506 |
mol = NewInfo->getMoleculeByGlobalIndex(l); |
507 |
locator->placeMol(sites[ids[l]], orientations[ids[l]], mol); |
508 |
l++; |
509 |
} |
510 |
} |
511 |
} |
512 |
|
513 |
//fill Hmat |
514 |
hmat(0, 0)= 10.0*rodRadius; |
515 |
hmat(0, 1) = 0.0; |
516 |
hmat(0, 2) = 0.0; |
517 |
|
518 |
hmat(1, 0) = 0.0; |
519 |
hmat(1, 1) = 10.0*rodRadius; |
520 |
hmat(1, 2) = 0.0; |
521 |
|
522 |
hmat(2, 0) = 0.0; |
523 |
hmat(2, 1) = 0.0; |
524 |
hmat(2, 2) = 5.0*rodLength + 2.0*rodRadius; |
525 |
|
526 |
//set Hmat |
527 |
NewInfo->getSnapshotManager()->getCurrentSnapshot()->setHmat(hmat); |
528 |
|
529 |
|
530 |
//create dumpwriter and write out the coordinates |
531 |
writer = new DumpWriter(NewInfo, outputFileName); |
532 |
|
533 |
if (writer == NULL) { |
534 |
sprintf(painCave.errMsg, "Error in creating dumpwriter object "); |
535 |
painCave.isFatal = 1; |
536 |
simError(); |
537 |
} |
538 |
|
539 |
writer->writeDump(); |
540 |
|
541 |
// deleting the writer will put the closing at the end of the dump file |
542 |
|
543 |
delete writer; |
544 |
|
545 |
// cleanup a by calling sim error..... |
546 |
sprintf(painCave.errMsg, "A new OpenMD file called \"%s\" has been " |
547 |
"generated.\n", outputFileName.c_str()); |
548 |
painCave.isFatal = 0; |
549 |
simError(); |
550 |
return 0; |
551 |
} |
552 |
|
553 |
void createMdFile(const std::string&oldMdFileName, |
554 |
const std::string&newMdFileName, |
555 |
std::vector<int> nMol) { |
556 |
ifstream oldMdFile; |
557 |
ofstream newMdFile; |
558 |
const int MAXLEN = 65535; |
559 |
char buffer[MAXLEN]; |
560 |
|
561 |
//create new .md file based on old .md file |
562 |
oldMdFile.open(oldMdFileName.c_str()); |
563 |
newMdFile.open(newMdFileName.c_str()); |
564 |
oldMdFile.getline(buffer, MAXLEN); |
565 |
|
566 |
unsigned int i = 0; |
567 |
while (!oldMdFile.eof()) { |
568 |
|
569 |
//correct molecule number |
570 |
if (strstr(buffer, "nMol") != NULL) { |
571 |
if(i<nMol.size()){ |
572 |
sprintf(buffer, "\tnMol = %i;", nMol.at(i)); |
573 |
newMdFile << buffer << std::endl; |
574 |
i++; |
575 |
} |
576 |
} else |
577 |
newMdFile << buffer << std::endl; |
578 |
|
579 |
oldMdFile.getline(buffer, MAXLEN); |
580 |
} |
581 |
|
582 |
oldMdFile.close(); |
583 |
newMdFile.close(); |
584 |
|
585 |
if (i != nMol.size()) { |
586 |
sprintf(painCave.errMsg, "Couldn't replace the correct number of nMol\n" |
587 |
"\tstatements in component blocks. Make sure that all\n" |
588 |
"\tcomponents in the template file have nMol=1"); |
589 |
painCave.isFatal = 1; |
590 |
simError(); |
591 |
} |
592 |
|
593 |
} |
594 |
|