1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
* Created by Kelsey M. Stocker on 4/5/12. |
42 |
* @author Kelsey M. Stocker |
43 |
* |
44 |
*/ |
45 |
|
46 |
|
47 |
|
48 |
#include <cstdlib> |
49 |
#include <cstdio> |
50 |
#include <cstring> |
51 |
#include <cmath> |
52 |
#include <iostream> |
53 |
#include <string> |
54 |
#include <map> |
55 |
#include <fstream> |
56 |
#include <algorithm> |
57 |
|
58 |
#include "config.h" |
59 |
#include "shapedLatticePentRod.hpp" |
60 |
#include "nanorod_pentBuilderCmd.h" |
61 |
#include "shapedLatticeRod.hpp" |
62 |
#include "lattice/LatticeFactory.hpp" |
63 |
#include "utils/MoLocator.hpp" |
64 |
#include "lattice/Lattice.hpp" |
65 |
#include "brains/Register.hpp" |
66 |
#include "brains/SimInfo.hpp" |
67 |
#include "brains/SimCreator.hpp" |
68 |
#include "io/DumpWriter.hpp" |
69 |
#include "math/SquareMatrix3.hpp" |
70 |
#include "utils/StringUtils.hpp" |
71 |
|
72 |
using namespace std; |
73 |
using namespace OpenMD; |
74 |
void createMdFile(const std::string&oldMdFileName, |
75 |
const std::string&newMdFileName, |
76 |
std::vector<int> numMol); |
77 |
|
78 |
int main(int argc, char *argv []) { |
79 |
|
80 |
registerLattice(); |
81 |
|
82 |
gengetopt_args_info args_info; |
83 |
std::string latticeType; |
84 |
std::string inputFileName; |
85 |
std::string outputFileName; |
86 |
|
87 |
MoLocator* locator; |
88 |
int nComponents; |
89 |
double latticeConstant; |
90 |
std::vector<double> lc; |
91 |
|
92 |
RealType rodRadius; |
93 |
RealType rodLength; |
94 |
|
95 |
Mat3x3d hmat; |
96 |
std::vector<Vector3d> latticePos; |
97 |
std::vector<Vector3d> latticeOrt; |
98 |
|
99 |
DumpWriter *writer; |
100 |
|
101 |
// Parse Command Line Arguments |
102 |
if (cmdline_parser(argc, argv, &args_info) != 0) |
103 |
exit(1); |
104 |
|
105 |
/* get lattice type */ |
106 |
latticeType = "FCC"; |
107 |
|
108 |
/* get input file name */ |
109 |
if (args_info.inputs_num) |
110 |
inputFileName = args_info.inputs[0]; |
111 |
else { |
112 |
sprintf(painCave.errMsg, "No input .md file name was specified " |
113 |
"on the command line"); |
114 |
painCave.isFatal = 1; |
115 |
cmdline_parser_print_help(); |
116 |
simError(); |
117 |
} |
118 |
|
119 |
/* parse md file and set up the system */ |
120 |
SimCreator oldCreator; |
121 |
SimInfo* oldInfo = oldCreator.createSim(inputFileName, false); |
122 |
|
123 |
latticeConstant = args_info.latticeConstant_arg; |
124 |
rodRadius = args_info.radius_arg; |
125 |
rodLength = args_info.length_arg; |
126 |
Globals* simParams = oldInfo->getSimParams(); |
127 |
|
128 |
/* Create nanorod */ |
129 |
shapedLatticePentRod nanoRod(latticeConstant, latticeType, |
130 |
rodRadius, rodLength); |
131 |
|
132 |
/* Build a lattice and get lattice points for this lattice constant */ |
133 |
|
134 |
//Rotation angles for lattice |
135 |
RealType phi, theta, psi; |
136 |
|
137 |
|
138 |
/* |
139 |
RealType cphi, sphi, ctheta, stheta, cpsi, spsi; |
140 |
|
141 |
cphi = cos(phi); |
142 |
sphi = sin(phi); |
143 |
ctheta = cos(theta); |
144 |
stheta = sin(theta); |
145 |
cpsi = cos(psi); |
146 |
spsi = sin(psi); |
147 |
*/ |
148 |
|
149 |
//Rotates 45 degrees about z-axis |
150 |
RotMat3x3d rotation45( 45.0 * M_PI / 180.0, 0.0, 0.0); |
151 |
|
152 |
/*rotation45[0][0] = sqrt(2)/2; |
153 |
rotation45[0][1] = -sqrt(2)/2; |
154 |
rotation45[0][2] = 0; |
155 |
rotation45[1][0] = sqrt(2)/2; |
156 |
rotation45[1][1] = sqrt(2)/2; |
157 |
rotation45[1][2] = 0; |
158 |
rotation45[2][0] = 0; |
159 |
rotation45[2][1] = 0; |
160 |
rotation45[2][2] = 1;*/ |
161 |
|
162 |
phi = 0.0; |
163 |
theta = 72 * M_PI / 180.0; |
164 |
psi = 0.0; |
165 |
|
166 |
//Rotates 72 degrees about y-axis |
167 |
RotMat3x3d rotation72(phi, theta, psi); |
168 |
|
169 |
/*rotation72[0][0] = sqrt(5)/4 - 0.25; |
170 |
rotation72[0][1] = 0; |
171 |
rotation72[0][2] = sqrt(2*(sqrt(5) + 5))/4; |
172 |
rotation72[1][0] = 0; |
173 |
rotation72[1][1] = 1; |
174 |
rotation72[1][2] = 0; |
175 |
rotation72[2][0] = -sqrt(2*(sqrt(5) + 5))/4; |
176 |
rotation72[2][1] = 0; |
177 |
rotation72[2][2] = sqrt(5)/4 - 0.25;*/ |
178 |
|
179 |
vector<Vector3d> getsites = nanoRod.getSites(); |
180 |
vector<Vector3d> getorientations = nanoRod.getOrientations(); |
181 |
vector<Vector3d> sites; |
182 |
vector<Vector3d> orientations; |
183 |
|
184 |
for (unsigned int index = 0; index < getsites.size(); index++) { |
185 |
Vector3d mySite = getsites[index]; |
186 |
Vector3d myOrient = getorientations[index]; |
187 |
Vector3d mySite2 = rotation45 * mySite; |
188 |
Vector3d o2 = rotation45 * myOrient; |
189 |
sites.push_back( mySite2 ); |
190 |
orientations.push_back( o2 ); |
191 |
|
192 |
mySite2 = rotation72 * mySite2; |
193 |
o2 = rotation72 * o2; |
194 |
sites.push_back( mySite2 ); |
195 |
orientations.push_back( o2 ); |
196 |
|
197 |
mySite2 = rotation72 * mySite2; |
198 |
o2 = rotation72 * o2; |
199 |
sites.push_back( mySite2 ); |
200 |
orientations.push_back( o2 ); |
201 |
|
202 |
mySite2 = rotation72 * mySite2; |
203 |
o2 = rotation72 * o2; |
204 |
sites.push_back( mySite2 ); |
205 |
orientations.push_back( o2 ); |
206 |
|
207 |
mySite2 = rotation72 * mySite2; |
208 |
o2 = rotation72 * o2; |
209 |
sites.push_back( mySite2 ); |
210 |
orientations.push_back( o2 ); |
211 |
} |
212 |
|
213 |
int nCenter = int((rodLength + 1.154700538*rodRadius)/2.88); |
214 |
|
215 |
for (int index = 0; index <= 0.5*nCenter; index++) { |
216 |
Vector3d myLoc_top(2.88*index, 0.0, 0.0); |
217 |
sites.push_back(myLoc_top); |
218 |
orientations.push_back(Vector3d(0.0)); |
219 |
} |
220 |
|
221 |
for (int index = 1; index <= 0.5*nCenter; index++) { |
222 |
Vector3d myLoc_bottom(-2.88*index, 0.0, 0.0); |
223 |
sites.push_back(myLoc_bottom); |
224 |
orientations.push_back(Vector3d(0.0)); |
225 |
} |
226 |
|
227 |
std::vector<int> vacancyTargets; |
228 |
vector<bool> isVacancy; |
229 |
|
230 |
Vector3d myLoc; |
231 |
RealType myR; |
232 |
|
233 |
for (unsigned int i = 0; i < sites.size(); i++) |
234 |
isVacancy.push_back(false); |
235 |
|
236 |
// cerr << "checking vacancyPercent" << "\n"; |
237 |
if (args_info.vacancyPercent_given) { |
238 |
// cerr << "vacancyPercent given" << "\n"; |
239 |
if (args_info.vacancyPercent_arg < 0.0 || args_info.vacancyPercent_arg > 100.0) { |
240 |
sprintf(painCave.errMsg, "vacancyPercent was set to a non-sensical value."); |
241 |
painCave.isFatal = 1; |
242 |
simError(); |
243 |
} else { |
244 |
RealType vF = args_info.vacancyPercent_arg / 100.0; |
245 |
// cerr << "vacancyPercent = " << vF << "\n"; |
246 |
RealType vIR; |
247 |
RealType vOR; |
248 |
if (args_info.vacancyInnerRadius_given) { |
249 |
vIR = args_info.vacancyInnerRadius_arg; |
250 |
} else { |
251 |
vIR = 0.0; |
252 |
} |
253 |
if (args_info.vacancyOuterRadius_given) { |
254 |
vOR = args_info.vacancyOuterRadius_arg; |
255 |
} else { |
256 |
vOR = rodRadius; |
257 |
} |
258 |
if (vIR >= 0.0 && vOR <= rodRadius && vOR >= vIR) { |
259 |
|
260 |
for (unsigned int i = 0; i < sites.size(); i++) { |
261 |
myLoc = sites[i]; |
262 |
myR = myLoc.length(); |
263 |
if (myR >= vIR && myR <= vOR) { |
264 |
vacancyTargets.push_back(i); |
265 |
} |
266 |
} |
267 |
std::random_shuffle(vacancyTargets.begin(), vacancyTargets.end()); |
268 |
|
269 |
int nTargets = vacancyTargets.size(); |
270 |
vacancyTargets.resize((int)(vF * nTargets)); |
271 |
|
272 |
|
273 |
sprintf(painCave.errMsg, "Removing %d atoms from randomly-selected\n" |
274 |
"\tsites between %lf and %lf.", (int) vacancyTargets.size(), |
275 |
vIR, vOR); |
276 |
painCave.isFatal = 0; |
277 |
simError(); |
278 |
|
279 |
isVacancy.clear(); |
280 |
for (unsigned int i = 0; i < sites.size(); i++) { |
281 |
bool vac = false; |
282 |
for (unsigned int j = 0; j < vacancyTargets.size(); j++) { |
283 |
if (i == vacancyTargets[j]) vac = true; |
284 |
} |
285 |
isVacancy.push_back(vac); |
286 |
} |
287 |
|
288 |
} else { |
289 |
sprintf(painCave.errMsg, "Something is strange about the vacancy\n" |
290 |
"\tinner or outer radii. Check their values."); |
291 |
painCave.isFatal = 1; |
292 |
simError(); |
293 |
} |
294 |
} |
295 |
} |
296 |
|
297 |
/* Get number of lattice sites */ |
298 |
int nSites = sites.size() - vacancyTargets.size(); |
299 |
|
300 |
// cerr << "sites.size() = " << sites.size() << "\n"; |
301 |
// cerr << "nSites = " << nSites << "\n"; |
302 |
// cerr << "vacancyTargets = " << vacancyTargets.size() << "\n"; |
303 |
|
304 |
std::vector<Component*> components = simParams->getComponents(); |
305 |
std::vector<RealType> molFractions; |
306 |
std::vector<RealType> shellRadii; |
307 |
std::vector<RealType> molecularMasses; |
308 |
std::vector<int> nMol; |
309 |
std::map<int, int> componentFromSite; |
310 |
nComponents = components.size(); |
311 |
// cerr << "nComponents = " << nComponents << "\n"; |
312 |
|
313 |
if (args_info.molFraction_given && args_info.shellRadius_given) { |
314 |
sprintf(painCave.errMsg, "Specify either molFraction or shellRadius " |
315 |
"arguments, but not both!"); |
316 |
painCave.isFatal = 1; |
317 |
simError(); |
318 |
} |
319 |
|
320 |
if (nComponents == 1) { |
321 |
molFractions.push_back(1.0); |
322 |
shellRadii.push_back(rodRadius); |
323 |
} else if (args_info.molFraction_given) { |
324 |
if ((int)args_info.molFraction_given == nComponents) { |
325 |
for (int i = 0; i < nComponents; i++) { |
326 |
molFractions.push_back(args_info.molFraction_arg[i]); |
327 |
} |
328 |
} else if ((int)args_info.molFraction_given == nComponents-1) { |
329 |
RealType remainingFraction = 1.0; |
330 |
for (int i = 0; i < nComponents-1; i++) { |
331 |
molFractions.push_back(args_info.molFraction_arg[i]); |
332 |
remainingFraction -= molFractions[i]; |
333 |
} |
334 |
molFractions.push_back(remainingFraction); |
335 |
} else { |
336 |
sprintf(painCave.errMsg, "nanorodBuilder can't figure out molFractions " |
337 |
"for all of the components in the <MetaData> block."); |
338 |
painCave.isFatal = 1; |
339 |
simError(); |
340 |
} |
341 |
} else if ((int)args_info.shellRadius_given) { |
342 |
if ((int)args_info.shellRadius_given == nComponents) { |
343 |
for (int i = 0; i < nComponents; i++) { |
344 |
shellRadii.push_back(args_info.shellRadius_arg[i]); |
345 |
} |
346 |
} else if ((int)args_info.shellRadius_given == nComponents-1) { |
347 |
for (int i = 0; i < nComponents-1; i++) { |
348 |
shellRadii.push_back(args_info.shellRadius_arg[i]); |
349 |
} |
350 |
shellRadii.push_back(rodRadius); |
351 |
} else { |
352 |
sprintf(painCave.errMsg, "nanorodBuilder can't figure out the\n" |
353 |
"\tshell radii for all of the components in the <MetaData> block."); |
354 |
painCave.isFatal = 1; |
355 |
simError(); |
356 |
} |
357 |
} else { |
358 |
sprintf(painCave.errMsg, "You have a multi-component <MetaData> block,\n" |
359 |
"\tbut have not specified either molFraction or shellRadius arguments."); |
360 |
painCave.isFatal = 1; |
361 |
simError(); |
362 |
} |
363 |
|
364 |
if (args_info.molFraction_given) { |
365 |
RealType totalFraction = 0.0; |
366 |
|
367 |
/* Do some simple sanity checking*/ |
368 |
|
369 |
for (int i = 0; i < nComponents; i++) { |
370 |
if (molFractions.at(i) < 0.0) { |
371 |
sprintf(painCave.errMsg, "One of the requested molFractions was" |
372 |
" less than zero!"); |
373 |
painCave.isFatal = 1; |
374 |
simError(); |
375 |
} |
376 |
if (molFractions.at(i) > 1.0) { |
377 |
sprintf(painCave.errMsg, "One of the requested molFractions was" |
378 |
" greater than one!"); |
379 |
painCave.isFatal = 1; |
380 |
simError(); |
381 |
} |
382 |
totalFraction += molFractions.at(i); |
383 |
} |
384 |
if (abs(totalFraction - 1.0) > 1e-6) { |
385 |
sprintf(painCave.errMsg, "The sum of molFractions was not close enough to 1.0"); |
386 |
painCave.isFatal = 1; |
387 |
simError(); |
388 |
} |
389 |
|
390 |
int remaining = nSites; |
391 |
for (int i=0; i < nComponents-1; i++) { |
392 |
nMol.push_back(int((RealType)nSites * molFractions.at(i))); |
393 |
remaining -= nMol.at(i); |
394 |
} |
395 |
nMol.push_back(remaining); |
396 |
|
397 |
// recompute actual mol fractions and perform final sanity check: |
398 |
|
399 |
int totalMolecules = 0; |
400 |
for (int i=0; i < nComponents; i++) { |
401 |
molFractions[i] = (RealType)(nMol.at(i))/(RealType)nSites; |
402 |
totalMolecules += nMol.at(i); |
403 |
} |
404 |
if (totalMolecules != nSites) { |
405 |
sprintf(painCave.errMsg, "Computed total number of molecules is not equal " |
406 |
"to the number of lattice sites!"); |
407 |
painCave.isFatal = 1; |
408 |
simError(); |
409 |
} |
410 |
} else { |
411 |
|
412 |
for (unsigned int i = 0; i < shellRadii.size(); i++) { |
413 |
if (shellRadii.at(i) > rodRadius + 1e-6 ) { |
414 |
sprintf(painCave.errMsg, "One of the shellRadius values exceeds the rod Radius."); |
415 |
painCave.isFatal = 1; |
416 |
simError(); |
417 |
} |
418 |
if (shellRadii.at(i) <= 0.0 ) { |
419 |
sprintf(painCave.errMsg, "One of the shellRadius values is smaller than zero!"); |
420 |
painCave.isFatal = 1; |
421 |
simError(); |
422 |
} |
423 |
} |
424 |
} |
425 |
|
426 |
vector<int> ids; |
427 |
if ((int)args_info.molFraction_given){ |
428 |
// cerr << "molFraction given 2" << "\n"; |
429 |
sprintf(painCave.errMsg, "Creating a randomized spherically-capped nanorod."); |
430 |
painCave.isFatal = 0; |
431 |
simError(); |
432 |
/* Random rod is the default case*/ |
433 |
|
434 |
for (unsigned int i = 0; i < sites.size(); i++) |
435 |
if (!isVacancy[i]) ids.push_back(i); |
436 |
|
437 |
std::random_shuffle(ids.begin(), ids.end()); |
438 |
|
439 |
} else{ |
440 |
sprintf(painCave.errMsg, "Creating an fcc nanorod."); |
441 |
painCave.isFatal = 0; |
442 |
simError(); |
443 |
|
444 |
RealType smallestSoFar; |
445 |
int myComponent = -1; |
446 |
nMol.clear(); |
447 |
nMol.resize(nComponents); |
448 |
|
449 |
// cerr << "shellRadii[0] " << shellRadii[0] << "\n"; |
450 |
// cerr << "rodRadius " << rodRadius << "\n"; |
451 |
|
452 |
for (unsigned int i = 0; i < sites.size(); i++) { |
453 |
myLoc = sites[i]; |
454 |
myR = myLoc.length(); |
455 |
smallestSoFar = rodRadius; |
456 |
//cerr << "vac = " << isVacancy[i]<< "\n"; |
457 |
|
458 |
if (!isVacancy[i]) { |
459 |
|
460 |
|
461 |
// for (int j = 0; j < nComponents; j++) { |
462 |
// if (myR <= shellRadii[j]) { |
463 |
// if (shellRadii[j] <= smallestSoFar) { |
464 |
// smallestSoFar = shellRadii[j]; |
465 |
// myComponent = j; |
466 |
// } |
467 |
// } |
468 |
// } |
469 |
myComponent = 0; |
470 |
componentFromSite[i] = myComponent; |
471 |
nMol[myComponent]++; |
472 |
// cerr << "nMol for myComp(" << myComponent<<") = " << nMol[myComponent] << "\n"; |
473 |
} |
474 |
} |
475 |
} |
476 |
// cerr << "nMol = " << nMol.at(0) << "\n"; |
477 |
|
478 |
outputFileName = args_info.output_arg; |
479 |
|
480 |
//creat new .md file on fly which corrects the number of molecule |
481 |
|
482 |
createMdFile(inputFileName, outputFileName, nMol); |
483 |
|
484 |
if (oldInfo != NULL) |
485 |
delete oldInfo; |
486 |
|
487 |
SimCreator newCreator; |
488 |
SimInfo* NewInfo = newCreator.createSim(outputFileName, false); |
489 |
|
490 |
// Place molecules |
491 |
Molecule* mol; |
492 |
SimInfo::MoleculeIterator mi; |
493 |
mol = NewInfo->beginMolecule(mi); |
494 |
|
495 |
int l = 0; |
496 |
|
497 |
for (int i = 0; i < nComponents; i++){ |
498 |
locator = new MoLocator(NewInfo->getMoleculeStamp(i), |
499 |
NewInfo->getForceField()); |
500 |
|
501 |
// cerr << "nMol = " << nMol.at(i) << "\n"; |
502 |
if (!args_info.molFraction_given) { |
503 |
for (unsigned int n = 0; n < sites.size(); n++) { |
504 |
if (!isVacancy[n]) { |
505 |
if (componentFromSite[n] == i) { |
506 |
mol = NewInfo->getMoleculeByGlobalIndex(l); |
507 |
locator->placeMol(sites[n], orientations[n], mol); |
508 |
l++; |
509 |
} |
510 |
} |
511 |
} |
512 |
} else { |
513 |
for (int n = 0; n < nMol.at(i); n++) { |
514 |
mol = NewInfo->getMoleculeByGlobalIndex(l); |
515 |
locator->placeMol(sites[ids[l]], orientations[ids[l]], mol); |
516 |
l++; |
517 |
} |
518 |
} |
519 |
} |
520 |
|
521 |
//fill Hmat |
522 |
hmat(0, 0)= 10.0*rodRadius; |
523 |
hmat(0, 1) = 0.0; |
524 |
hmat(0, 2) = 0.0; |
525 |
|
526 |
hmat(1, 0) = 0.0; |
527 |
hmat(1, 1) = 10.0*rodRadius; |
528 |
hmat(1, 2) = 0.0; |
529 |
|
530 |
hmat(2, 0) = 0.0; |
531 |
hmat(2, 1) = 0.0; |
532 |
hmat(2, 2) = 5.0*rodLength + 2.0*rodRadius; |
533 |
|
534 |
//set Hmat |
535 |
NewInfo->getSnapshotManager()->getCurrentSnapshot()->setHmat(hmat); |
536 |
|
537 |
|
538 |
//create dumpwriter and write out the coordinates |
539 |
writer = new DumpWriter(NewInfo, outputFileName); |
540 |
|
541 |
if (writer == NULL) { |
542 |
sprintf(painCave.errMsg, "Error in creating dumpwriter object "); |
543 |
painCave.isFatal = 1; |
544 |
simError(); |
545 |
} |
546 |
|
547 |
writer->writeDump(); |
548 |
|
549 |
// deleting the writer will put the closing at the end of the dump file |
550 |
|
551 |
delete writer; |
552 |
|
553 |
// cleanup a by calling sim error..... |
554 |
sprintf(painCave.errMsg, "A new OpenMD file called \"%s\" has been " |
555 |
"generated.\n", outputFileName.c_str()); |
556 |
painCave.isFatal = 0; |
557 |
simError(); |
558 |
return 0; |
559 |
} |
560 |
|
561 |
void createMdFile(const std::string&oldMdFileName, |
562 |
const std::string&newMdFileName, |
563 |
std::vector<int> nMol) { |
564 |
ifstream oldMdFile; |
565 |
ofstream newMdFile; |
566 |
const int MAXLEN = 65535; |
567 |
char buffer[MAXLEN]; |
568 |
|
569 |
//create new .md file based on old .md file |
570 |
oldMdFile.open(oldMdFileName.c_str()); |
571 |
newMdFile.open(newMdFileName.c_str()); |
572 |
oldMdFile.getline(buffer, MAXLEN); |
573 |
|
574 |
unsigned int i = 0; |
575 |
while (!oldMdFile.eof()) { |
576 |
|
577 |
//correct molecule number |
578 |
if (strstr(buffer, "nMol") != NULL) { |
579 |
if(i<nMol.size()){ |
580 |
sprintf(buffer, "\tnMol = %i;", nMol.at(i)); |
581 |
newMdFile << buffer << std::endl; |
582 |
i++; |
583 |
} |
584 |
} else |
585 |
newMdFile << buffer << std::endl; |
586 |
|
587 |
oldMdFile.getline(buffer, MAXLEN); |
588 |
} |
589 |
|
590 |
oldMdFile.close(); |
591 |
newMdFile.close(); |
592 |
|
593 |
if (i != nMol.size()) { |
594 |
sprintf(painCave.errMsg, "Couldn't replace the correct number of nMol\n" |
595 |
"\tstatements in component blocks. Make sure that all\n" |
596 |
"\tcomponents in the template file have nMol=1"); |
597 |
painCave.isFatal = 1; |
598 |
simError(); |
599 |
} |
600 |
|
601 |
} |
602 |
|