1 |
gezelter |
2 |
#include <iostream> |
2 |
|
|
|
3 |
|
|
#include <cstdlib> |
4 |
|
|
#include <cstring> |
5 |
|
|
#include <cmath> |
6 |
|
|
|
7 |
|
|
|
8 |
|
|
#include "simError.h" |
9 |
|
|
#include "SimInfo.hpp" |
10 |
|
|
#include "ReadWrite.hpp" |
11 |
|
|
|
12 |
|
|
#include "latticeBuilder.hpp" |
13 |
|
|
#include "MoLocator.hpp" |
14 |
|
|
#include "sysBuild.hpp" |
15 |
|
|
#include "nanoBuilder.hpp" |
16 |
|
|
|
17 |
|
|
nanoBuilder::nanoBuilder(int &hasError){ |
18 |
|
|
int Errors; |
19 |
|
|
int foundCore,foundShell; |
20 |
|
|
int i; |
21 |
|
|
|
22 |
|
|
|
23 |
|
|
|
24 |
|
|
//Zero variables |
25 |
|
|
particleRadius = 0.0; |
26 |
|
|
coreRadius = 0.0; |
27 |
|
|
vacancyFraction = 0.0; |
28 |
|
|
vacancyRadius = 0.0; |
29 |
|
|
shellRadius = 0.0; |
30 |
|
|
latticeSpacing = 0.0; |
31 |
|
|
|
32 |
|
|
buildNmol = 0; |
33 |
|
|
|
34 |
|
|
nCoreMolecules = 0; |
35 |
|
|
nShellMolecules = 0; |
36 |
|
|
|
37 |
|
|
atomCount = 0; |
38 |
|
|
coreAtomCount = 0; |
39 |
|
|
shellAtomCount = 0; |
40 |
|
|
|
41 |
|
|
|
42 |
|
|
|
43 |
|
|
moleculeCount = 0; |
44 |
|
|
foundCore = 0; |
45 |
|
|
foundShell = 0; |
46 |
|
|
totalMolecules = 0; |
47 |
|
|
coreHasOrientation = 0; |
48 |
|
|
shellHasOrientation = 0; |
49 |
|
|
nInterface = 0; |
50 |
|
|
nMol = 0; |
51 |
|
|
|
52 |
|
|
hasError = 0; |
53 |
|
|
Errors = 0; |
54 |
|
|
|
55 |
|
|
//Initialize class members from bsInfo struct that sysbuilder provides. |
56 |
|
|
isRandom = bsInfo.isRandomParticle; |
57 |
|
|
hasVacancies = bsInfo.hasVacancies; |
58 |
|
|
latticeType = bsInfo.latticeType; |
59 |
|
|
particleRadius = bsInfo.particleRadius; |
60 |
|
|
coreRadius = bsInfo.coreRadius; |
61 |
|
|
vacancyFraction = bsInfo.vacancyFraction; |
62 |
|
|
latticeSpacing = bsInfo.latticeSpacing; |
63 |
|
|
soluteX = bsInfo.soluteX; //Mole fraction for random particle. |
64 |
|
|
|
65 |
|
|
|
66 |
|
|
|
67 |
|
|
|
68 |
|
|
|
69 |
|
|
for (i=0;bsInfo.nComponents;i++){ |
70 |
|
|
if( !strcmp( bsInfo.compStamps[i]->getID(),bsInfo.coreName )){ |
71 |
|
|
foundCore = 1; |
72 |
|
|
coreStamp = bsInfo.compStamps[i]; |
73 |
|
|
nCoreMolecules = bsInfo.componentsNmol[i]; |
74 |
|
|
} |
75 |
|
|
if( !strcmp( bsInfo.compStamps[i]->getID(),bsInfo.shellName)){ |
76 |
|
|
foundShell = 1; |
77 |
|
|
shellStamp = bsInfo.compStamps[i]; |
78 |
|
|
nShellMolecules = bsInfo.componentsNmol[i]; |
79 |
|
|
|
80 |
|
|
} |
81 |
|
|
|
82 |
|
|
} |
83 |
|
|
|
84 |
|
|
|
85 |
|
|
|
86 |
|
|
if( !foundCore ){ |
87 |
|
|
hasError = 1; |
88 |
|
|
return; |
89 |
|
|
} |
90 |
|
|
if( !foundShell ){ |
91 |
|
|
hasError = 1; |
92 |
|
|
return; |
93 |
|
|
} |
94 |
|
|
|
95 |
|
|
|
96 |
|
|
|
97 |
|
|
Errors = sanityCheck(); |
98 |
|
|
|
99 |
|
|
if (Errors){ |
100 |
|
|
hasError = 1; |
101 |
|
|
return; |
102 |
|
|
} |
103 |
|
|
|
104 |
|
|
|
105 |
|
|
|
106 |
|
|
|
107 |
|
|
|
108 |
|
|
|
109 |
|
|
|
110 |
|
|
nCoreModelAtoms = coreStamp->getNAtoms(); |
111 |
|
|
nShellModelAtoms = shellStamp->getNAtoms(); |
112 |
|
|
|
113 |
|
|
|
114 |
|
|
// We assume that if the core or shell model has more then one atom |
115 |
|
|
// the model has an orientational component... |
116 |
|
|
if (nCoreModelAtoms > 1) coreHasOrientation = 1; |
117 |
|
|
if (nShellModelAtoms > 1) shellHasOrientation = 1; |
118 |
|
|
|
119 |
|
|
maxModelNatoms = std::max(nCoreModelAtoms,nShellModelAtoms); |
120 |
|
|
|
121 |
|
|
/* If we specify a number of atoms in bass, we will try to build a nanopartice |
122 |
|
|
with that number. |
123 |
|
|
*/ |
124 |
|
|
|
125 |
|
|
|
126 |
|
|
if ((nShellMolecules != 0) && (nCoreMolecules != 0)){ |
127 |
|
|
totalMolecules = nShellMolecules + nCoreMolecules; |
128 |
|
|
nCells = ceil(pow((double)totalMolecules/4.0, 1/3)); |
129 |
|
|
buildNmol = 1; |
130 |
|
|
} |
131 |
|
|
else { |
132 |
|
|
nCells = 2.0 * particleRadius/latticeSpacing; |
133 |
|
|
shellRadius = particleRadius - coreRadius; |
134 |
|
|
} |
135 |
|
|
|
136 |
|
|
|
137 |
|
|
|
138 |
|
|
|
139 |
|
|
// Initialize random seed |
140 |
|
|
srand48( RAND_SEED ); |
141 |
|
|
|
142 |
|
|
|
143 |
|
|
} |
144 |
|
|
|
145 |
|
|
|
146 |
|
|
nanoBuilder::~nanoBuilder(){ |
147 |
|
|
} |
148 |
|
|
|
149 |
|
|
|
150 |
|
|
// Checks to make sure we aren't doing something the builder can't do. |
151 |
|
|
int nanoBuilder::sanityCheck(void){ |
152 |
|
|
|
153 |
|
|
// Right now we only do bimetallic nanoparticles |
154 |
|
|
if (bsInfo.nComponents > 2) return 1; |
155 |
|
|
|
156 |
|
|
//Check for vacancies and random |
157 |
|
|
if (hasVacancies && isRandom) return 1; |
158 |
|
|
|
159 |
|
|
// make sure we aren't trying to build a core larger then the total particle size |
160 |
|
|
if ((coreRadius >= particleRadius) && (particleRadius != 0)) return 1; |
161 |
|
|
|
162 |
|
|
// we initialize the lattice spacing to be 0.0, if the lattice spacing is still 0.0 |
163 |
|
|
// we have a problem |
164 |
|
|
if (latticeSpacing == 0.0) return 1; |
165 |
|
|
|
166 |
|
|
// Check to see if we are specifing the number of atoms in the particle correctly. |
167 |
|
|
if ((nShellMolecules == 0) && (nCoreMolecules != 0)){ |
168 |
|
|
cerr << "nShellParticles is zero and nCoreParticles != 0" << "\n"; |
169 |
|
|
return 1; |
170 |
|
|
} |
171 |
|
|
// Make sure there are more then two components if we are building a randomly mixed particle. |
172 |
|
|
if ((bsInfo.nComponents < 2) && (isRandom)){ |
173 |
|
|
cerr << "Two Components are needed to build a random particle." << "\n"; |
174 |
|
|
} |
175 |
|
|
// Make sure both the core and shell models specify a target nmol. |
176 |
|
|
if ((nShellMolecules != 0) && (nCoreMolecules == 0)){ |
177 |
|
|
cerr << "nCoreParticles is zero and nShellParticles != 0" << "\n"; |
178 |
|
|
return 1; |
179 |
|
|
} |
180 |
|
|
|
181 |
|
|
return 0; |
182 |
|
|
|
183 |
|
|
} |
184 |
|
|
|
185 |
|
|
|
186 |
|
|
|
187 |
|
|
int nanoBuilder::buildNanoParticle( void ){ |
188 |
|
|
|
189 |
|
|
int ix; |
190 |
|
|
int iy; |
191 |
|
|
int iz; |
192 |
|
|
double *rx; |
193 |
|
|
double *ry; |
194 |
|
|
double *rz; |
195 |
|
|
double pos[3]; |
196 |
|
|
double A[3][3]; |
197 |
|
|
double HmatI[3][3]; |
198 |
|
|
|
199 |
|
|
int nCellSites; |
200 |
|
|
int iref; |
201 |
|
|
int appNMols; |
202 |
|
|
int latticeCount = 0; |
203 |
|
|
|
204 |
|
|
int nAtoms; |
205 |
|
|
int nCoreAtomCounter = 0; |
206 |
|
|
int nShellAtomCounter = 0; |
207 |
|
|
int hasError; |
208 |
|
|
|
209 |
|
|
int i, j; |
210 |
|
|
|
211 |
|
|
int interfaceIndex = 0; |
212 |
|
|
double dist; |
213 |
|
|
double distsq; |
214 |
|
|
int latticeNpoints; |
215 |
|
|
int shesActualSizetoMe = 0; |
216 |
|
|
|
217 |
|
|
DumpWriter* writer; |
218 |
|
|
SimInfo* simnfo; |
219 |
|
|
SimState* theConfig; |
220 |
|
|
|
221 |
|
|
Lattice *myLattice; |
222 |
|
|
MoLocator *coreLocate; |
223 |
|
|
MoLocator *shellLocate; |
224 |
|
|
|
225 |
|
|
|
226 |
|
|
Atom** atoms; |
227 |
|
|
|
228 |
|
|
hasError = 0; |
229 |
|
|
|
230 |
|
|
myLattice = new Lattice(FCC_LATTICE_TYPE,latticeSpacing); |
231 |
|
|
/* |
232 |
|
|
latticeNpoints = myLattice.getNpoints(); |
233 |
|
|
|
234 |
|
|
// Initializd atom vector to approximate size. |
235 |
|
|
switch (buildType){ |
236 |
|
|
|
237 |
|
|
case BUILD_NMOL_PARTICLE: |
238 |
|
|
|
239 |
|
|
break; |
240 |
|
|
case BUILD_CORE_SHELL_VACANCY: |
241 |
|
|
// Make space in the vector for all atoms except the last full cells |
242 |
|
|
// We will have to add at most (latticeNpoints-1)^3 to vector |
243 |
|
|
appNMols = latticeNPoints * pow((double)(nCells - 1),3); |
244 |
|
|
moleculeVector.pushBack(); |
245 |
|
|
|
246 |
|
|
default: |
247 |
|
|
// Make space in the vector for all atoms except the last full cells |
248 |
|
|
// We will have to add at most (latticeNpoints-1)^3 to vector |
249 |
|
|
appNMols = latticeNPoints * pow((double)(nCells - 1),3); |
250 |
|
|
|
251 |
|
|
} |
252 |
|
|
*/ |
253 |
|
|
|
254 |
|
|
|
255 |
|
|
|
256 |
|
|
|
257 |
|
|
// Create molocator and atom arrays. |
258 |
|
|
coreLocate = new MoLocator(coreStamp); |
259 |
|
|
shellLocate = new MoLocator(shellStamp); |
260 |
|
|
|
261 |
|
|
|
262 |
|
|
|
263 |
|
|
|
264 |
|
|
|
265 |
|
|
|
266 |
|
|
for(iz=-nCells;iz < nCells;iz++){ |
267 |
|
|
for(iy=-nCells;iy<nCells;iy++){ |
268 |
|
|
for(ix=-nCells;ix<nCells;ix++){ |
269 |
|
|
nCellSites = myLattice->getLatticePoints(&rx,&ry,&rz, |
270 |
|
|
ix,iy,iz); |
271 |
|
|
for (iref=1;iref<nCellSites;iref++){ |
272 |
|
|
latticeCount++; |
273 |
|
|
|
274 |
|
|
pos[0] = rx[iref]; |
275 |
|
|
pos[1] = ry[iref]; |
276 |
|
|
pos[2] = rz[iref]; |
277 |
|
|
|
278 |
|
|
distsq = rx[iref]*rx[iref] + ry[iref]*ry[iref] +rz[iref]*rz[iref]; |
279 |
|
|
dist = sqrt(distsq); |
280 |
|
|
|
281 |
|
|
switch(buildType){ |
282 |
|
|
|
283 |
|
|
case BUILD_CORE_SHELL: |
284 |
|
|
nanoBuilder::buildWithCoreShell(dist,pos); |
285 |
|
|
break; |
286 |
|
|
case BUILD_CORE_SHELL_VACANCY: |
287 |
|
|
nanoBuilder::buildWithVacancies(dist,pos); |
288 |
|
|
break; |
289 |
|
|
|
290 |
|
|
case BUILD_RANDOM_PARTICLE: |
291 |
|
|
nanoBuilder::buildRandomlyMixed(dist,pos); |
292 |
|
|
break; |
293 |
|
|
case BUILD_NMOL_PARTICLE: |
294 |
|
|
nanoBuilder::buildNmolParticle(dist,pos); |
295 |
|
|
} |
296 |
|
|
} |
297 |
|
|
} |
298 |
|
|
} |
299 |
|
|
} |
300 |
|
|
|
301 |
|
|
|
302 |
|
|
|
303 |
|
|
// Create vacancies |
304 |
|
|
if (hasVacancies) buildVacancies(); |
305 |
|
|
|
306 |
|
|
// Find the size of the atom vector not including Null atoms |
307 |
|
|
for (i=0;i<moleculeVector.size();i++){ |
308 |
|
|
if (! moleculeVector[i].isVacancy){ |
309 |
|
|
shesActualSizetoMe++; |
310 |
|
|
nAtoms = moleculeVector[i].myStamp->getNAtoms(); |
311 |
|
|
} |
312 |
|
|
} |
313 |
|
|
|
314 |
|
|
// Make a random particle. |
315 |
|
|
if (isRandom){ |
316 |
|
|
placeRandom(shesActualSizetoMe); |
317 |
|
|
|
318 |
|
|
// Loop back thru and count natoms since they may have changed |
319 |
|
|
for (i=0;i<moleculeVector.size();i++){ |
320 |
|
|
if (! moleculeVector[i].isVacancy){ |
321 |
|
|
shesActualSizetoMe++; |
322 |
|
|
nAtoms = moleculeVector[i].myStamp->getNAtoms(); |
323 |
|
|
} |
324 |
|
|
} |
325 |
|
|
} |
326 |
|
|
|
327 |
|
|
|
328 |
|
|
// set up the SimInfo object |
329 |
|
|
|
330 |
|
|
simnfo = new SimInfo(); |
331 |
|
|
simnfo->n_atoms = nAtoms; |
332 |
|
|
|
333 |
|
|
theConfig = simnfo->getConfiguration(); |
334 |
|
|
theConfig->createArrays( nAtoms ); |
335 |
|
|
simnfo->atoms = new Atom*[nAtoms]; |
336 |
|
|
atoms = simnfo->atoms; |
337 |
|
|
|
338 |
|
|
|
339 |
|
|
shesActualSizetoMe = 0; |
340 |
|
|
/* Use the information from the molecule vector to place the atoms. |
341 |
|
|
*/ |
342 |
|
|
for (i= 0;i<moleculeVector.size();i++){ |
343 |
|
|
if (! moleculeVector[i].isVacancy) { |
344 |
|
|
orientationMunger( A ); |
345 |
|
|
if( moleculeVector[i].isCore){ |
346 |
|
|
nCoreAtomCounter += nCoreModelAtoms; |
347 |
|
|
coreLocate->placeMol(moleculeVector[i].pos,A,atoms,nShellAtomCounter, theConfig); |
348 |
|
|
} |
349 |
|
|
else { |
350 |
|
|
nShellAtomCounter += nShellModelAtoms; |
351 |
|
|
shellLocate->placeMol(moleculeVector[i].pos,A,atoms,nCoreAtomCounter, theConfig); |
352 |
|
|
} |
353 |
|
|
shesActualSizetoMe++; |
354 |
|
|
} |
355 |
|
|
} |
356 |
|
|
|
357 |
|
|
|
358 |
|
|
// shellLocate.placeMol(pos, A, moleculeVector,shellAtomCount); |
359 |
|
|
|
360 |
|
|
for (i=0;i<3;i++) |
361 |
|
|
for (j=0; j<3; j++) |
362 |
|
|
simnfo->Hmat[i][j] = 0.0; |
363 |
|
|
|
364 |
|
|
simnfo->Hmat[0][0] = 1.0; |
365 |
|
|
simnfo->Hmat[1][1] = 1.0; |
366 |
|
|
simnfo->Hmat[2][2] = 1.0; |
367 |
|
|
|
368 |
|
|
|
369 |
|
|
|
370 |
|
|
sprintf( simnfo->sampleName, "%s.dump", bsInfo.outPrefix ); |
371 |
|
|
sprintf( simnfo->finalName, "%s.init", bsInfo.outPrefix ); |
372 |
|
|
|
373 |
|
|
// set up the writer and write out |
374 |
|
|
|
375 |
|
|
writer = new DumpWriter( simnfo ); |
376 |
|
|
writer->writeFinal(0.0); |
377 |
|
|
|
378 |
|
|
// clean up |
379 |
|
|
|
380 |
|
|
delete[] myLattice; |
381 |
|
|
|
382 |
|
|
return hasError; |
383 |
|
|
} |
384 |
|
|
|
385 |
|
|
// Begin Builder routines-------------------------------> |
386 |
|
|
|
387 |
|
|
/* Builds a standard core-shell nanoparticle. |
388 |
|
|
*/ |
389 |
|
|
void nanoBuilder::buildWithCoreShell(double dist, double pos[3]){ |
390 |
|
|
|
391 |
|
|
|
392 |
|
|
if ( dist <= particleRadius ){ |
393 |
|
|
moleculeVector.push_back(myMol); |
394 |
|
|
|
395 |
|
|
if (dist <= coreRadius){ |
396 |
|
|
coreAtomCount += nCoreModelAtoms; |
397 |
|
|
moleculeVector[moleculeCount].pos[0] = pos[0]; |
398 |
|
|
moleculeVector[moleculeCount].pos[1] = pos[1]; |
399 |
|
|
moleculeVector[moleculeCount].pos[2] = pos[2]; |
400 |
|
|
moleculeVector[moleculeCount].myStamp = coreStamp; |
401 |
|
|
moleculeVector[moleculeCount].isCore = 1; |
402 |
|
|
moleculeVector[moleculeCount].isShell = 0; |
403 |
|
|
|
404 |
|
|
} |
405 |
|
|
// Place shell |
406 |
|
|
else{ |
407 |
|
|
shellAtomCount += nShellModelAtoms; |
408 |
|
|
moleculeVector[moleculeCount].pos[0] = pos[0]; |
409 |
|
|
moleculeVector[moleculeCount].pos[1] = pos[1]; |
410 |
|
|
moleculeVector[moleculeCount].pos[2] = pos[2]; |
411 |
|
|
moleculeVector[moleculeCount].myStamp = shellStamp; |
412 |
|
|
moleculeVector[moleculeCount].isCore = 0; |
413 |
|
|
moleculeVector[moleculeCount].isShell = 1; |
414 |
|
|
|
415 |
|
|
} |
416 |
|
|
moleculeCount++; |
417 |
|
|
} |
418 |
|
|
|
419 |
|
|
} |
420 |
|
|
/* |
421 |
|
|
Builds a core-shell nanoparticle and tracks the number of molecules at the |
422 |
|
|
interface between the core-shell. These are recorded in vacancyInterface which is just |
423 |
|
|
an integer vector. |
424 |
|
|
*/ |
425 |
|
|
void nanoBuilder::buildWithVacancies(double dist, double pos[3]){ |
426 |
|
|
if ( dist <= particleRadius ){ |
427 |
|
|
|
428 |
|
|
moleculeVector.push_back(myMol); |
429 |
|
|
if (dist <= coreRadius){ |
430 |
|
|
|
431 |
|
|
coreAtomCount += nCoreModelAtoms; |
432 |
|
|
moleculeVector[moleculeCount].pos[0] = pos[0]; |
433 |
|
|
moleculeVector[moleculeCount].pos[1] = pos[1]; |
434 |
|
|
moleculeVector[moleculeCount].pos[2] = pos[2]; |
435 |
|
|
moleculeVector[moleculeCount].myStamp = coreStamp; |
436 |
|
|
moleculeVector[moleculeCount].isCore = 1; |
437 |
|
|
moleculeVector[moleculeCount].isShell = 0; |
438 |
|
|
|
439 |
|
|
if ((dist >= coreRadius - vacancyRadius/2.0) && |
440 |
|
|
(dist <= coreRadius + vacancyRadius/2.0)){ |
441 |
|
|
|
442 |
|
|
vacancyInterface.push_back(moleculeCount); |
443 |
|
|
nInterface++; |
444 |
|
|
} |
445 |
|
|
} else { |
446 |
|
|
// Place shell |
447 |
|
|
shellAtomCount += nShellModelAtoms; |
448 |
|
|
moleculeVector[moleculeCount].pos[0] = pos[0]; |
449 |
|
|
moleculeVector[moleculeCount].pos[1] = pos[1]; |
450 |
|
|
moleculeVector[moleculeCount].pos[2] = pos[2]; |
451 |
|
|
moleculeVector[moleculeCount].myStamp = shellStamp; |
452 |
|
|
moleculeVector[moleculeCount].isCore = 0; |
453 |
|
|
moleculeVector[moleculeCount].isShell = 1; |
454 |
|
|
|
455 |
|
|
} |
456 |
|
|
moleculeCount++; |
457 |
|
|
} |
458 |
|
|
|
459 |
|
|
|
460 |
|
|
|
461 |
|
|
} |
462 |
|
|
|
463 |
|
|
/* Builds a core-shell nanoparticle where the number of core and shell |
464 |
|
|
molecules is known. |
465 |
|
|
*/ |
466 |
|
|
void nanoBuilder::buildNmolParticle(double dist, double pos[3]){ |
467 |
|
|
static int nMolCounter = 0; |
468 |
|
|
static int nCoreMolCounter = 0; |
469 |
|
|
|
470 |
|
|
|
471 |
|
|
if (nMolCounter < totalMolecules){ |
472 |
|
|
moleculeVector.push_back(myMol); |
473 |
|
|
if (nCoreMolCounter < nCoreMolecules){ |
474 |
|
|
|
475 |
|
|
coreAtomCount += nCoreModelAtoms; |
476 |
|
|
moleculeVector[moleculeCount].pos[0] = pos[0]; |
477 |
|
|
moleculeVector[moleculeCount].pos[1] = pos[1]; |
478 |
|
|
moleculeVector[moleculeCount].pos[2] = pos[2]; |
479 |
|
|
moleculeVector[moleculeCount].myStamp = coreStamp; |
480 |
|
|
moleculeVector[moleculeCount].isCore = 1; |
481 |
|
|
moleculeVector[moleculeCount].isShell = 0; |
482 |
|
|
|
483 |
|
|
|
484 |
|
|
} else { |
485 |
|
|
shellAtomCount += nShellModelAtoms; |
486 |
|
|
moleculeVector[moleculeCount].pos[0] = pos[0]; |
487 |
|
|
moleculeVector[moleculeCount].pos[1] = pos[1]; |
488 |
|
|
moleculeVector[moleculeCount].pos[2] = pos[2]; |
489 |
|
|
moleculeVector[moleculeCount].myStamp = shellStamp; |
490 |
|
|
moleculeVector[moleculeCount].isCore = 0; |
491 |
|
|
moleculeVector[moleculeCount].isShell = 1; |
492 |
|
|
|
493 |
|
|
|
494 |
|
|
} |
495 |
|
|
|
496 |
|
|
} |
497 |
|
|
} |
498 |
|
|
|
499 |
|
|
|
500 |
|
|
/* Builds a randomly mixed nanoparticle. We build the particle to be |
501 |
|
|
entirely the core model, then randomly switch identities after the particle is built. |
502 |
|
|
*/ |
503 |
|
|
void nanoBuilder::buildRandomlyMixed(double dist, double pos[3]){ |
504 |
|
|
|
505 |
|
|
|
506 |
|
|
if ( dist <= particleRadius ){ |
507 |
|
|
moleculeCount++; |
508 |
|
|
|
509 |
|
|
|
510 |
|
|
moleculeVector[moleculeCount].pos[0] = pos[0]; |
511 |
|
|
moleculeVector[moleculeCount].pos[1] = pos[1]; |
512 |
|
|
moleculeVector[moleculeCount].pos[2] = pos[2]; |
513 |
|
|
moleculeVector[moleculeCount].myStamp = coreStamp; |
514 |
|
|
moleculeVector[moleculeCount].isCore = 1; |
515 |
|
|
moleculeVector[moleculeCount].isShell = 0; |
516 |
|
|
|
517 |
|
|
} |
518 |
|
|
|
519 |
|
|
|
520 |
|
|
|
521 |
|
|
} |
522 |
|
|
|
523 |
|
|
|
524 |
|
|
// -----------------------END Builder routines. |
525 |
|
|
|
526 |
|
|
|
527 |
|
|
|
528 |
|
|
//------------------------Begin Helper routines. |
529 |
|
|
void nanoBuilder::placeRandom(int totalMol){ |
530 |
|
|
int nSolute; |
531 |
|
|
int nSolvent; |
532 |
|
|
int i; |
533 |
|
|
int notfound; |
534 |
|
|
double solute_x; |
535 |
|
|
double solvent_x; |
536 |
|
|
|
537 |
|
|
int tester; |
538 |
|
|
|
539 |
|
|
nSolute = floor(soluteX * (double)totalMolecules); //CHECK ME |
540 |
|
|
nSolvent = totalMolecules - nSolute; |
541 |
|
|
|
542 |
|
|
solute_x = (double)nSolute/(double)totalMolecules; |
543 |
|
|
solvent_x = 1.0 - solute_x; |
544 |
|
|
|
545 |
|
|
|
546 |
|
|
|
547 |
|
|
|
548 |
|
|
for(i=0;nSolute-1;i++){ |
549 |
|
|
notfound = 1; |
550 |
|
|
|
551 |
|
|
while(notfound){ |
552 |
|
|
|
553 |
|
|
tester = floor((double)totalMolecules * drand48()); //Pick a molecule |
554 |
|
|
|
555 |
|
|
if (moleculeVector[tester].isCore){ // Make sure we select a core atom to change |
556 |
|
|
|
557 |
|
|
moleculeVector[tester].isCore = 0; |
558 |
|
|
moleculeVector[tester].isShell = 1; |
559 |
|
|
moleculeVector[tester].myStamp = shellStamp; |
560 |
|
|
notfound = 0; //set notfound = false. |
561 |
|
|
} |
562 |
|
|
|
563 |
|
|
} |
564 |
|
|
|
565 |
|
|
} |
566 |
|
|
} |
567 |
|
|
|
568 |
|
|
|
569 |
|
|
void nanoBuilder::buildVacancies(void){ |
570 |
|
|
int i; |
571 |
|
|
int* VacancyList; //logical nInterface long. |
572 |
|
|
int notfound; |
573 |
|
|
int index = 0; |
574 |
|
|
int nVacancies; |
575 |
|
|
int tester; |
576 |
|
|
|
577 |
|
|
if (nInterface != 0){ |
578 |
|
|
nVacancies = floor((double)nInterface * vacancyFraction); |
579 |
|
|
|
580 |
|
|
VacancyList = new int[nInterface]; |
581 |
|
|
|
582 |
|
|
// make vacancy list all false |
583 |
|
|
for(i=0;i<nInterface-1;i++){ |
584 |
|
|
VacancyList[i] = 0; |
585 |
|
|
} |
586 |
|
|
|
587 |
|
|
// Build a vacancy list.... |
588 |
|
|
for(i=0;nVacancies-1;i++){ |
589 |
|
|
notfound = 1; |
590 |
|
|
while(notfound){ |
591 |
|
|
|
592 |
|
|
tester = floor((double)nInterface * drand48()); |
593 |
|
|
|
594 |
|
|
if(! VacancyList[tester]){ |
595 |
|
|
VacancyList[tester] = 1; |
596 |
|
|
notfound = 0; |
597 |
|
|
} |
598 |
|
|
|
599 |
|
|
} |
600 |
|
|
} |
601 |
|
|
} |
602 |
|
|
// Loop through and kill the vacancies from atom vector. |
603 |
|
|
|
604 |
|
|
for (i=0;i<nInterface;i++){ |
605 |
|
|
if (VacancyList[i]){ |
606 |
|
|
moleculeVector[vacancyInterface[i]].isVacancy = 1; |
607 |
|
|
} // End Vacancy List |
608 |
|
|
} // for nInterface |
609 |
|
|
|
610 |
|
|
|
611 |
|
|
delete[] VacancyList; |
612 |
|
|
} |
613 |
|
|
|
614 |
|
|
|
615 |
|
|
|
616 |
|
|
|
617 |
|
|
void nanoBuilder::orientationMunger(double rot[3][3]){ |
618 |
|
|
|
619 |
|
|
double theta, phi, psi; |
620 |
|
|
double cosTheta; |
621 |
|
|
|
622 |
|
|
// select random phi, psi, and cosTheta |
623 |
|
|
|
624 |
|
|
phi = 2.0 * M_PI * drand48(); |
625 |
|
|
psi = 2.0 * M_PI * drand48(); |
626 |
|
|
cosTheta = (2.0 * drand48()) - 1.0; // sample cos -1 to 1 |
627 |
|
|
|
628 |
|
|
theta = acos( cosTheta ); |
629 |
|
|
|
630 |
|
|
rot[0][0] = (cos(phi) * cos(psi)) - (sin(phi) * cos(theta) * sin(psi)); |
631 |
|
|
rot[0][1] = (sin(phi) * cos(psi)) + (cos(phi) * cos(theta) * sin(psi)); |
632 |
|
|
rot[0][2] = sin(theta) * sin(psi); |
633 |
|
|
|
634 |
|
|
rot[1][0] = -(cos(phi) * sin(psi)) - (sin(phi) * cos(theta) * cos(psi)); |
635 |
|
|
rot[1][1] = -(sin(phi) * sin(psi)) + (cos(phi) * cos(theta) * cos(psi)); |
636 |
|
|
rot[1][2] = sin(theta) * cos(psi); |
637 |
|
|
|
638 |
|
|
rot[2][0] = sin(phi) * sin(theta); |
639 |
|
|
rot[2][1] = -cos(phi) * sin(theta); |
640 |
|
|
rot[2][2] = cos(theta); |
641 |
|
|
|
642 |
|
|
} |
643 |
|
|
|
644 |
|
|
|
645 |
|
|
|
646 |
|
|
|
647 |
|
|
|
648 |
|
|
|
649 |
|
|
|