| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Acknowledgement of the program authors must be made in any | 
| 10 | *    publication of scientific results based in part on use of the | 
| 11 | *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | *    the article in which the program was described (Matthew | 
| 13 | *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | * | 
| 18 | * 2. Redistributions of source code must retain the above copyright | 
| 19 | *    notice, this list of conditions and the following disclaimer. | 
| 20 | * | 
| 21 | * 3. Redistributions in binary form must reproduce the above copyright | 
| 22 | *    notice, this list of conditions and the following disclaimer in the | 
| 23 | *    documentation and/or other materials provided with the | 
| 24 | *    distribution. | 
| 25 | * | 
| 26 | * This software is provided "AS IS," without a warranty of any | 
| 27 | * kind. All express or implied conditions, representations and | 
| 28 | * warranties, including any implied warranty of merchantability, | 
| 29 | * fitness for a particular purpose or non-infringement, are hereby | 
| 30 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 31 | * be liable for any damages suffered by licensee as a result of | 
| 32 | * using, modifying or distributing the software or its | 
| 33 | * derivatives. In no event will the University of Notre Dame or its | 
| 34 | * licensors be liable for any lost revenue, profit or data, or for | 
| 35 | * direct, indirect, special, consequential, incidental or punitive | 
| 36 | * damages, however caused and regardless of the theory of liability, | 
| 37 | * arising out of the use of or inability to use software, even if the | 
| 38 | * University of Notre Dame has been advised of the possibility of | 
| 39 | * such damages. | 
| 40 | */ | 
| 41 |  | 
| 42 | #include "applications/hydrodynamics/HydrodynamicsModel.hpp" | 
| 43 | #include "math/LU.hpp" | 
| 44 | #include "math/DynamicRectMatrix.hpp" | 
| 45 | #include "math/SquareMatrix3.hpp" | 
| 46 | namespace oopse { | 
| 47 | /** | 
| 48 | * Reference: | 
| 49 | * Beatriz Carrasco and Jose Gracia de la Torre, Hydrodynamic Properties of Rigid Particles: | 
| 50 | * Comparison of Different Modeling and Computational Procedures. | 
| 51 | * Biophysical Journal, 75(6), 3044, 1999 | 
| 52 | */ | 
| 53 | bool HydrodynamicsModel::calcHydrodyanmicsProps(double eta) { | 
| 54 | if (!createBeads(beads_)) { | 
| 55 | std::cout << "can not create beads" << std::endl; | 
| 56 | return false; | 
| 57 | } | 
| 58 |  | 
| 59 | int nbeads = beads_.size(); | 
| 60 | DynamicRectMatrix<double> B(3*nbeads, 3*nbeads); | 
| 61 | DynamicRectMatrix<double> C(3*nbeads, 3*nbeads); | 
| 62 | Mat3x3d I; | 
| 63 | for (std::size_t i = 0; i < nbeads; ++i) { | 
| 64 | for (std::size_t j = 0; j < nbeads; ++j) { | 
| 65 | Mat3x3d Tij; | 
| 66 | if (i != j ) { | 
| 67 | Vector3d Rij = beads_[i].pos - beads_[j].pos; | 
| 68 | double rij = Rij.length(); | 
| 69 | double rij2 = rij * rij; | 
| 70 | double sumSigma2OverRij2 = ((beads_[i].radius*beads_[i].radius) + (beads_[i].radius*beads_[i].radius)) / rij2; | 
| 71 | Mat3x3d tmpMat; | 
| 72 | tmpMat = outProduct(beads_[i].pos, beads_[j].pos) / rij2; | 
| 73 | double constant = 8.0 * NumericConstant::PI * eta * rij; | 
| 74 | Tij = ((1.0 + sumSigma2OverRij2/3.0) * I + (1.0 - sumSigma2OverRij2) * tmpMat ) / constant; | 
| 75 | }else { | 
| 76 | double constant = 1.0 / (6.0 * NumericConstant::PI * eta * beads_[i].radius); | 
| 77 | Tij(0, 0) = constant; | 
| 78 | Tij(1, 1) = constant; | 
| 79 | Tij(2, 2) = constant; | 
| 80 | } | 
| 81 | B.setSubMatrix(i*3, j*3, Tij); | 
| 82 | } | 
| 83 | } | 
| 84 |  | 
| 85 | //invert B Matrix | 
| 86 | invertMatrix(B, C); | 
| 87 |  | 
| 88 | //prepare U Matrix relative to arbitrary origin O(0.0, 0.0, 0.0) | 
| 89 | std::vector<Mat3x3d> U; | 
| 90 | for (int i = 0; i < nbeads; ++i) { | 
| 91 | Mat3x3d currU; | 
| 92 | currU.setupSkewMat(beads_[i].pos); | 
| 93 | U.push_back(currU); | 
| 94 | } | 
| 95 |  | 
| 96 | //calculate Xi matrix at arbitrary origin O | 
| 97 | Mat3x3d Xitt; | 
| 98 | Mat3x3d Xirr; | 
| 99 | Mat3x3d Xitr; | 
| 100 |  | 
| 101 | for (std::size_t i = 0; i < nbeads; ++i) { | 
| 102 | for (std::size_t j = 0; j < nbeads; ++j) { | 
| 103 | Mat3x3d Cij; | 
| 104 | C.getSubMatrix(i*3, j*3, Cij); | 
| 105 |  | 
| 106 | Xitt += Cij; | 
| 107 | Xirr += U[i] * Cij; | 
| 108 | Xitr += U[i] * Cij * U[j]; | 
| 109 | } | 
| 110 | } | 
| 111 |  | 
| 112 | //invert Xi to get Diffusion Tensor at arbitrary origin O | 
| 113 | RectMatrix<double, 6, 6> Xi; | 
| 114 | RectMatrix<double, 6, 6> Do; | 
| 115 | Xi.setSubMatrix(0, 0, Xitt); | 
| 116 | Xi.setSubMatrix(0, 3, Xitr.transpose()); | 
| 117 | Xi.setSubMatrix(3, 0, Xitr); | 
| 118 | Xi.setSubMatrix(3, 3, Xitt); | 
| 119 | invertMatrix(Xi, Do); | 
| 120 |  | 
| 121 | Mat3x3d Dott; //translational diffusion tensor at arbitrary origin O | 
| 122 | Mat3x3d Dorr; //rotational diffusion tensor at arbitrary origin O | 
| 123 | Mat3x3d Dotr; //translation-rotation couplingl diffusion tensor at arbitrary origin O | 
| 124 | Do.getSubMatrix(0, 0 , Dott); | 
| 125 | Do.getSubMatrix(3, 0, Dotr); | 
| 126 | Do.getSubMatrix(3, 3, Dorr); | 
| 127 |  | 
| 128 | //calculate center of diffusion | 
| 129 | Mat3x3d tmpMat; | 
| 130 | tmpMat(0, 0) = Dorr(1, 1) + Dorr(2, 2); | 
| 131 | tmpMat(0, 1) = - Dorr(0, 1); | 
| 132 | tmpMat(0, 2) = -Dorr(0, 2); | 
| 133 | tmpMat(1, 0) = -Dorr(0, 1); | 
| 134 | tmpMat(1, 1) = Dorr(0, 0)  + Dorr(2, 2); | 
| 135 | tmpMat(1, 2) = -Dorr(1, 2); | 
| 136 | tmpMat(2, 0) = -Dorr(0, 2); | 
| 137 | tmpMat(2, 1) = -Dorr(1, 2); | 
| 138 | tmpMat(2, 2) = Dorr(1, 1) + Dorr(0, 0); | 
| 139 |  | 
| 140 | Vector3d tmpVec; | 
| 141 | tmpVec[0] = Dotr(1, 2) - Dotr(2, 1); | 
| 142 | tmpVec[1] = Dotr(2, 0) - Dotr(0, 2); | 
| 143 | tmpVec[2] = Dotr(0, 1) - Dotr(1, 0); | 
| 144 |  | 
| 145 | Vector3d rod = tmpMat.inverse() * tmpVec; | 
| 146 |  | 
| 147 | //calculate Diffusion Tensor at center of diffusion | 
| 148 | Mat3x3d Uod; | 
| 149 | Uod.setupSkewMat(rod); | 
| 150 |  | 
| 151 | Mat3x3d Ddtt; //translational diffusion tensor at diffusion center | 
| 152 | Mat3x3d Ddtr; //rotational diffusion tensor at diffusion center | 
| 153 | Mat3x3d Ddrr; //translation-rotation couplingl diffusion tensor at diffusion tensor | 
| 154 |  | 
| 155 | Ddtt = Dott - Uod * Dorr * Uod + Dotr.transpose() * Uod - Uod * Dotr; | 
| 156 | Ddrr = Dorr; | 
| 157 | Ddtr = Dotr + Dorr * Uod; | 
| 158 |  | 
| 159 | props_.diffCenter = rod; | 
| 160 | props_.transDiff = Ddtt; | 
| 161 | props_.transRotDiff = Ddtr; | 
| 162 | props_.rotDiff = Ddrr; | 
| 163 |  | 
| 164 | return true; | 
| 165 | } | 
| 166 |  | 
| 167 | void HydrodynamicsModel::writeBeads(std::ostream& os) { | 
| 168 |  | 
| 169 | } | 
| 170 |  | 
| 171 | void HydrodynamicsModel::writeDiffCenterAndDiffTensor(std::ostream& os) { | 
| 172 |  | 
| 173 | } | 
| 174 |  | 
| 175 | } |