| 95 |  | double rij2 = rij * rij; | 
| 96 |  | double sumSigma2OverRij2 = ((beads_[i].radius*beads_[i].radius) + (beads_[i].radius*beads_[i].radius)) / rij2; | 
| 97 |  | Mat3x3d tmpMat; | 
| 98 | < | tmpMat = outProduct(beads_[i].pos, beads_[j].pos) / rij2; | 
| 98 | > | tmpMat = outProduct(Rij, Rij) / rij2; | 
| 99 |  | double constant = 8.0 * NumericConstant::PI * viscosity_ * rij; | 
| 100 |  | Tij = ((1.0 + sumSigma2OverRij2/3.0) * I + (1.0 - sumSigma2OverRij2) * tmpMat ) / constant; | 
| 101 |  | }else { | 
| 105 |  | Tij(2, 2) = constant; | 
| 106 |  | } | 
| 107 |  | B.setSubMatrix(i*3, j*3, Tij); | 
| 108 | + | std::cout << Tij << std::endl; | 
| 109 |  | } | 
| 110 |  | } | 
| 111 |  |  | 
| 112 | + | std::cout << "B=\n" | 
| 113 | + | << B << std::endl; | 
| 114 |  | //invert B Matrix | 
| 115 |  | invertMatrix(B, C); | 
| 116 | + |  | 
| 117 | + | std::cout << "C=\n" | 
| 118 | + | << C << std::endl; | 
| 119 | + |  | 
| 120 |  | //prepare U Matrix relative to arbitrary origin O(0.0, 0.0, 0.0) | 
| 121 |  | std::vector<Mat3x3d> U; | 
| 122 |  | for (int i = 0; i < nbeads; ++i) { | 
| 129 |  | Mat3x3d Xitt; | 
| 130 |  | Mat3x3d Xirr; | 
| 131 |  | Mat3x3d Xitr; | 
| 132 | + |  | 
| 133 | + | //calculate the total volume | 
| 134 | + |  | 
| 135 | + | double volume = 0.0; | 
| 136 | + | for (std::vector<BeadParam>::iterator iter = beads_.begin(); iter != beads_.end(); ++iter) { | 
| 137 | + | volume = 4.0/3.0 * NumericConstant::PI * pow((*iter).radius,3); | 
| 138 | + | } | 
| 139 |  |  | 
| 140 |  | for (std::size_t i = 0; i < nbeads; ++i) { | 
| 141 |  | for (std::size_t j = 0; j < nbeads; ++j) { | 
| 143 |  | C.getSubMatrix(i*3, j*3, Cij); | 
| 144 |  |  | 
| 145 |  | Xitt += Cij; | 
| 146 | < | Xirr += U[i] * Cij; | 
| 147 | < | Xitr += U[i] * Cij * U[j]; | 
| 146 | > | Xitr += U[i] * Cij; | 
| 147 | > | Xirr += -U[i] * Cij * U[j]; | 
| 148 | > | //Xirr += -U[i] * Cij * U[j] + (0.166*6 * viscosity_ * volume) * I; | 
| 149 |  | } | 
| 150 |  | } | 
| 151 |  |  | 
| 165 |  | Mat3x3d Dorr; //rotational diffusion tensor at arbitrary origin O | 
| 166 |  | Mat3x3d Dotr; //translation-rotation couplingl diffusion tensor at arbitrary origin O | 
| 167 |  |  | 
| 168 | < | Mat3x3d XirrInv(0.0); | 
| 154 | < | Mat3x3d XirrCopy; | 
| 155 | < | XirrCopy = Xirr; | 
| 168 | > | const static Mat3x3d zeroMat(0.0); | 
| 169 |  |  | 
| 170 |  | Mat3x3d XittInv(0.0); | 
| 171 | < | Mat3x3d XittCopy; | 
| 172 | < | XittCopy = Xitt; | 
| 173 | < | invertMatrix(XittCopy, XittInv); | 
| 171 | > | XittInv = Xitt.inverse(); | 
| 172 | > |  | 
| 173 | > | //Xirr may not be inverted,if it one of the diagonal element is zero, for example | 
| 174 | > | //( a11 a12 0) | 
| 175 | > | //( a21 a22 0) | 
| 176 | > | //( 0    0    0) | 
| 177 | > | Mat3x3d XirrInv; | 
| 178 | > | XirrInv = Xirr.inverse(); | 
| 179 |  |  | 
| 180 |  | Mat3x3d tmp; | 
| 181 |  | Mat3x3d tmpInv; | 
| 182 |  | tmp = Xitt - Xitr.transpose() * XirrInv * Xitr; | 
| 183 | + | tmpInv = tmp.inverse(); | 
| 184 |  |  | 
| 166 | – | const static Mat3x3d zeroMat(0.0); | 
| 167 | – | if (!invertMatrix(tmp, tmpInv)) { | 
| 168 | – | tmpInv = zeroMat; | 
| 169 | – | } | 
| 170 | – |  | 
| 185 |  | Dott = kt * tmpInv; | 
| 186 | < | Dotr = -kt*XirrInv * Xitr * tmpInv; | 
| 186 | > | Dotr = -kt*XirrInv * Xitr * tmpInv* 1.0E8; | 
| 187 |  |  | 
| 188 | < | tmp = Xirr - Xitr * XittInv * Xitr.transpose(); | 
| 188 | > | tmp = Xirr - Xitr * XittInv * Xitr.transpose(); | 
| 189 | > | tmpInv = tmp.inverse(); | 
| 190 |  |  | 
| 191 | < | if(!invertMatrix(tmp, tmpInv)) { | 
| 177 | < | tmpInv = zeroMat; | 
| 178 | < | } | 
| 179 | < | Dorr = kt * tmpInv; | 
| 191 | > | Dorr = kt * tmpInv*1.0E16; | 
| 192 |  |  | 
| 193 |  | //Do.getSubMatrix(0, 0 , Dott); | 
| 194 |  | //Do.getSubMatrix(3, 0, Dotr); | 
| 210 |  | tmpVec[1] = Dotr(2, 0) - Dotr(0, 2); | 
| 211 |  | tmpVec[2] = Dotr(0, 1) - Dotr(1, 0); | 
| 212 |  |  | 
| 213 | < | if(!invertMatrix(tmp, tmpInv)) { | 
| 202 | < | tmpInv = zeroMat; | 
| 203 | < | } | 
| 213 | > | tmpInv = tmp.inverse(); | 
| 214 |  |  | 
| 215 |  | Vector3d rod = tmpInv * tmpVec; | 
| 216 |  |  | 
| 256 |  | os << "//translational diffusion tensor" << std::endl; | 
| 257 |  | os << props_.transDiff << std::endl; | 
| 258 |  |  | 
| 259 | < | os << "//translational diffusion tensor" << std::endl; | 
| 259 | > | os << "//translation-rotation coupling diffusion tensor" << std::endl; | 
| 260 |  | os << props_.transRotDiff << std::endl; | 
| 261 |  |  | 
| 262 |  | os << "//rotational diffusion tensor" << std::endl; |