1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Acknowledgement of the program authors must be made in any |
10 |
* publication of scientific results based in part on use of the |
11 |
* program. An acceptable form of acknowledgement is citation of |
12 |
* the article in which the program was described (Matthew |
13 |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
* |
18 |
* 2. Redistributions of source code must retain the above copyright |
19 |
* notice, this list of conditions and the following disclaimer. |
20 |
* |
21 |
* 3. Redistributions in binary form must reproduce the above copyright |
22 |
* notice, this list of conditions and the following disclaimer in the |
23 |
* documentation and/or other materials provided with the |
24 |
* distribution. |
25 |
* |
26 |
* This software is provided "AS IS," without a warranty of any |
27 |
* kind. All express or implied conditions, representations and |
28 |
* warranties, including any implied warranty of merchantability, |
29 |
* fitness for a particular purpose or non-infringement, are hereby |
30 |
* excluded. The University of Notre Dame and its licensors shall not |
31 |
* be liable for any damages suffered by licensee as a result of |
32 |
* using, modifying or distributing the software or its |
33 |
* derivatives. In no event will the University of Notre Dame or its |
34 |
* licensors be liable for any lost revenue, profit or data, or for |
35 |
* direct, indirect, special, consequential, incidental or punitive |
36 |
* damages, however caused and regardless of the theory of liability, |
37 |
* arising out of the use of or inability to use software, even if the |
38 |
* University of Notre Dame has been advised of the possibility of |
39 |
* such damages. |
40 |
*/ |
41 |
|
42 |
#include "applications/hydrodynamics/ApproximationModel.hpp" |
43 |
#include "math/LU.hpp" |
44 |
#include "math/DynamicRectMatrix.hpp" |
45 |
#include "math/SquareMatrix3.hpp" |
46 |
#include "utils/OOPSEConstant.hpp" |
47 |
#include "applications/hydrodynamics/Spheric.hpp" |
48 |
#include "applications/hydrodynamics/Ellipsoid.hpp" |
49 |
#include "applications/hydrodynamics/CompositeShape.hpp" |
50 |
#include "math/LU.hpp" |
51 |
#include "utils/simError.h" |
52 |
namespace oopse { |
53 |
/** |
54 |
* Reference: |
55 |
* Beatriz Carrasco and Jose Gracia de la Torre, Hydrodynamic Properties of Rigid Particles: |
56 |
* Comparison of Different Modeling and Computational Procedures. |
57 |
* Biophysical Journal, 75(6), 3044, 1999 |
58 |
*/ |
59 |
|
60 |
ApproximationModel::ApproximationModel(StuntDouble* sd, SimInfo* info): HydrodynamicsModel(sd, info){ |
61 |
|
62 |
} |
63 |
|
64 |
bool ApproximationModel::calcHydroProps(Spheric* spheric, double viscosity, double temperature) { |
65 |
return internalCalcHydroProps(static_cast<Shape*>(spheric), viscosity, temperature); |
66 |
} |
67 |
|
68 |
bool ApproximationModel::calcHydroProps(Ellipsoid* ellipsoid, double viscosity, double temperature) { |
69 |
return internalCalcHydroProps(static_cast<Shape*>(ellipsoid), viscosity, temperature); |
70 |
} |
71 |
bool ApproximationModel::calcHydroProps(CompositeShape* compositeShape, double viscosity, double temperature) { |
72 |
return internalCalcHydroProps(static_cast<Shape*>(compositeShape), viscosity, temperature); |
73 |
} |
74 |
|
75 |
void ApproximationModel::init() { |
76 |
if (!createBeads(beads_)) { |
77 |
sprintf(painCave.errMsg, "ApproximationModel::init() : Can not create beads\n"); |
78 |
painCave.isFatal = 1; |
79 |
simError(); |
80 |
} |
81 |
|
82 |
} |
83 |
|
84 |
bool ApproximationModel::internalCalcHydroProps(Shape* shape, double viscosity, double temperature) { |
85 |
|
86 |
bool ret = true; |
87 |
HydroProps cr; |
88 |
HydroProps cd; |
89 |
calcHydroPropsAtCR(beads_, viscosity, temperature, cr); |
90 |
//calcHydroPropsAtCD(beads_, viscosity, temperature, cd); |
91 |
setCR(cr); |
92 |
setCD(cd); |
93 |
|
94 |
return true; |
95 |
} |
96 |
|
97 |
bool ApproximationModel::calcHydroPropsAtCR(std::vector<BeadParam>& beads, double viscosity, double temperature, HydroProps& cr) { |
98 |
|
99 |
int nbeads = beads.size(); |
100 |
DynamicRectMatrix<double> B(3*nbeads, 3*nbeads); |
101 |
DynamicRectMatrix<double> C(3*nbeads, 3*nbeads); |
102 |
Mat3x3d I; |
103 |
I(0, 0) = 1.0; |
104 |
I(1, 1) = 1.0; |
105 |
I(2, 2) = 1.0; |
106 |
|
107 |
for (std::size_t i = 0; i < nbeads; ++i) { |
108 |
for (std::size_t j = 0; j < nbeads; ++j) { |
109 |
Mat3x3d Tij; |
110 |
if (i != j ) { |
111 |
Vector3d Rij = beads[i].pos - beads[j].pos; |
112 |
double rij = Rij.length(); |
113 |
double rij2 = rij * rij; |
114 |
double sumSigma2OverRij2 = ((beads[i].radius*beads[i].radius) + (beads[j].radius*beads[j].radius)) / rij2; |
115 |
Mat3x3d tmpMat; |
116 |
tmpMat = outProduct(Rij, Rij) / rij2; |
117 |
double constant = 8.0 * NumericConstant::PI * viscosity * rij; |
118 |
Tij = ((1.0 + sumSigma2OverRij2/3.0) * I + (1.0 - sumSigma2OverRij2) * tmpMat ) / constant; |
119 |
}else { |
120 |
double constant = 1.0 / (6.0 * NumericConstant::PI * viscosity * beads[i].radius); |
121 |
Tij(0, 0) = constant; |
122 |
Tij(1, 1) = constant; |
123 |
Tij(2, 2) = constant; |
124 |
} |
125 |
B.setSubMatrix(i*3, j*3, Tij); |
126 |
} |
127 |
} |
128 |
|
129 |
//invert B Matrix |
130 |
invertMatrix(B, C); |
131 |
|
132 |
//prepare U Matrix relative to arbitrary origin O(0.0, 0.0, 0.0) |
133 |
std::vector<Mat3x3d> U; |
134 |
for (int i = 0; i < nbeads; ++i) { |
135 |
Mat3x3d currU; |
136 |
currU.setupSkewMat(beads[i].pos); |
137 |
U.push_back(currU); |
138 |
} |
139 |
|
140 |
//calculate Xi matrix at arbitrary origin O |
141 |
Mat3x3d Xiott; |
142 |
Mat3x3d Xiorr; |
143 |
Mat3x3d Xiotr; |
144 |
|
145 |
//calculate the total volume |
146 |
|
147 |
double volume = 0.0; |
148 |
for (std::vector<BeadParam>::iterator iter = beads.begin(); iter != beads.end(); ++iter) { |
149 |
volume += 4.0/3.0 * NumericConstant::PI * pow((*iter).radius,3); |
150 |
} |
151 |
|
152 |
for (std::size_t i = 0; i < nbeads; ++i) { |
153 |
for (std::size_t j = 0; j < nbeads; ++j) { |
154 |
Mat3x3d Cij; |
155 |
C.getSubMatrix(i*3, j*3, Cij); |
156 |
|
157 |
Xiott += Cij; |
158 |
Xiotr += U[i] * Cij; |
159 |
//Xiorr += -U[i] * Cij * U[j] + (6 * viscosity * volume) * I; |
160 |
Xiorr += -U[i] * Cij * U[j]; |
161 |
} |
162 |
} |
163 |
|
164 |
const double convertConstant = 6.023; //convert poise.angstrom to amu/fs |
165 |
Xiott *= convertConstant; |
166 |
Xiotr *= convertConstant; |
167 |
Xiorr *= convertConstant; |
168 |
|
169 |
|
170 |
|
171 |
Mat3x3d tmp; |
172 |
Mat3x3d tmpInv; |
173 |
Vector3d tmpVec; |
174 |
tmp(0, 0) = Xiott(1, 1) + Xiott(2, 2); |
175 |
tmp(0, 1) = - Xiott(0, 1); |
176 |
tmp(0, 2) = -Xiott(0, 2); |
177 |
tmp(1, 0) = -Xiott(0, 1); |
178 |
tmp(1, 1) = Xiott(0, 0) + Xiott(2, 2); |
179 |
tmp(1, 2) = -Xiott(1, 2); |
180 |
tmp(2, 0) = -Xiott(0, 2); |
181 |
tmp(2, 1) = -Xiott(1, 2); |
182 |
tmp(2, 2) = Xiott(1, 1) + Xiott(0, 0); |
183 |
tmpVec[0] = Xiotr(2, 1) - Xiotr(1, 2); |
184 |
tmpVec[1] = Xiotr(0, 2) - Xiotr(2, 0); |
185 |
tmpVec[2] = Xiotr(1, 0) - Xiotr(0, 1); |
186 |
tmpInv = tmp.inverse(); |
187 |
Vector3d ror = tmpInv * tmpVec; //center of resistance |
188 |
Mat3x3d Uor; |
189 |
Uor.setupSkewMat(ror); |
190 |
|
191 |
Mat3x3d Xirtt; |
192 |
Mat3x3d Xirrr; |
193 |
Mat3x3d Xirtr; |
194 |
|
195 |
Xirtt = Xiott; |
196 |
Xirtr = (Xiotr - Uor * Xiott); |
197 |
Xirrr = Xiorr - Uor * Xiott * Uor + Xiotr * Uor - Uor * Xiotr.transpose(); |
198 |
|
199 |
|
200 |
SquareMatrix<double,6> Xir6x6; |
201 |
SquareMatrix<double,6> Dr6x6; |
202 |
|
203 |
Xir6x6.setSubMatrix(0, 0, Xirtt); |
204 |
Xir6x6.setSubMatrix(0, 3, Xirtr.transpose()); |
205 |
Xir6x6.setSubMatrix(3, 0, Xirtr); |
206 |
Xir6x6.setSubMatrix(3, 3, Xirrr); |
207 |
|
208 |
invertMatrix(Xir6x6, Dr6x6); |
209 |
Mat3x3d Drtt; |
210 |
Mat3x3d Drtr; |
211 |
Mat3x3d Drrt; |
212 |
Mat3x3d Drrr; |
213 |
Dr6x6.getSubMatrix(0, 0, Drtt); |
214 |
Dr6x6.getSubMatrix(0, 3, Drrt); |
215 |
Dr6x6.getSubMatrix(3, 0, Drtr); |
216 |
Dr6x6.getSubMatrix(3, 3, Drrr); |
217 |
double kt = OOPSEConstant::kB * temperature ; |
218 |
Drtt *= kt; |
219 |
Drrt *= kt; |
220 |
Drtr *= kt; |
221 |
Drrr *= kt; |
222 |
Xirtt *= OOPSEConstant::kb * temperature; |
223 |
Xirtr *= OOPSEConstant::kb * temperature; |
224 |
Xirrr *= OOPSEConstant::kb * temperature; |
225 |
|
226 |
|
227 |
cr.center = ror; |
228 |
cr.Xi.setSubMatrix(0, 0, Xirtt); |
229 |
cr.Xi.setSubMatrix(0, 3, Xirtr); |
230 |
cr.Xi.setSubMatrix(3, 0, Xirtr); |
231 |
cr.Xi.setSubMatrix(3, 3, Xirrr); |
232 |
cr.D.setSubMatrix(0, 0, Drtt); |
233 |
cr.D.setSubMatrix(0, 3, Drrt); |
234 |
cr.D.setSubMatrix(3, 0, Drtr); |
235 |
cr.D.setSubMatrix(3, 3, Drrr); |
236 |
|
237 |
std::cout << "-----------------------------------------\n"; |
238 |
std::cout << "center of resistance :" << std::endl; |
239 |
std::cout << ror << std::endl; |
240 |
std::cout << "resistant tensor at center of resistance" << std::endl; |
241 |
std::cout << "translation:" << std::endl; |
242 |
std::cout << Xirtt << std::endl; |
243 |
std::cout << "translation-rotation:" << std::endl; |
244 |
std::cout << Xirtr << std::endl; |
245 |
std::cout << "rotation:" << std::endl; |
246 |
std::cout << Xirrr << std::endl; |
247 |
std::cout << "diffusion tensor at center of resistance" << std::endl; |
248 |
std::cout << "translation:" << std::endl; |
249 |
std::cout << Drtt << std::endl; |
250 |
std::cout << "rotation-translation:" << std::endl; |
251 |
std::cout << Drrt << std::endl; |
252 |
std::cout << "translation-rotation:" << std::endl; |
253 |
std::cout << Drtr << std::endl; |
254 |
std::cout << "rotation:" << std::endl; |
255 |
std::cout << Drrr << std::endl; |
256 |
std::cout << "-----------------------------------------\n"; |
257 |
|
258 |
return true; |
259 |
} |
260 |
|
261 |
bool ApproximationModel::calcHydroPropsAtCD(std::vector<BeadParam>& beads, double viscosity, double temperature, HydroProps& cr) { |
262 |
|
263 |
int nbeads = beads.size(); |
264 |
DynamicRectMatrix<double> B(3*nbeads, 3*nbeads); |
265 |
DynamicRectMatrix<double> C(3*nbeads, 3*nbeads); |
266 |
Mat3x3d I; |
267 |
I(0, 0) = 1.0; |
268 |
I(1, 1) = 1.0; |
269 |
I(2, 2) = 1.0; |
270 |
|
271 |
for (std::size_t i = 0; i < nbeads; ++i) { |
272 |
for (std::size_t j = 0; j < nbeads; ++j) { |
273 |
Mat3x3d Tij; |
274 |
if (i != j ) { |
275 |
Vector3d Rij = beads[i].pos - beads[j].pos; |
276 |
double rij = Rij.length(); |
277 |
double rij2 = rij * rij; |
278 |
double sumSigma2OverRij2 = ((beads[i].radius*beads[i].radius) + (beads[j].radius*beads[j].radius)) / rij2; |
279 |
Mat3x3d tmpMat; |
280 |
tmpMat = outProduct(Rij, Rij) / rij2; |
281 |
double constant = 8.0 * NumericConstant::PI * viscosity * rij; |
282 |
Tij = ((1.0 + sumSigma2OverRij2/3.0) * I + (1.0 - sumSigma2OverRij2) * tmpMat ) / constant; |
283 |
}else { |
284 |
double constant = 1.0 / (6.0 * NumericConstant::PI * viscosity * beads[i].radius); |
285 |
Tij(0, 0) = constant; |
286 |
Tij(1, 1) = constant; |
287 |
Tij(2, 2) = constant; |
288 |
} |
289 |
B.setSubMatrix(i*3, j*3, Tij); |
290 |
} |
291 |
} |
292 |
|
293 |
//invert B Matrix |
294 |
invertMatrix(B, C); |
295 |
|
296 |
//prepare U Matrix relative to arbitrary origin O(0.0, 0.0, 0.0) |
297 |
std::vector<Mat3x3d> U; |
298 |
for (int i = 0; i < nbeads; ++i) { |
299 |
Mat3x3d currU; |
300 |
currU.setupSkewMat(beads[i].pos); |
301 |
U.push_back(currU); |
302 |
} |
303 |
|
304 |
//calculate Xi matrix at arbitrary origin O |
305 |
Mat3x3d Xitt; |
306 |
Mat3x3d Xirr; |
307 |
Mat3x3d Xitr; |
308 |
|
309 |
//calculate the total volume |
310 |
|
311 |
double volume = 0.0; |
312 |
for (std::vector<BeadParam>::iterator iter = beads.begin(); iter != beads.end(); ++iter) { |
313 |
volume += 4.0/3.0 * NumericConstant::PI * pow((*iter).radius,3); |
314 |
} |
315 |
|
316 |
for (std::size_t i = 0; i < nbeads; ++i) { |
317 |
for (std::size_t j = 0; j < nbeads; ++j) { |
318 |
Mat3x3d Cij; |
319 |
C.getSubMatrix(i*3, j*3, Cij); |
320 |
|
321 |
Xitt += Cij; |
322 |
Xitr += U[i] * Cij; |
323 |
//Xirr += -U[i] * Cij * U[j] + (6 * viscosity * volume) * I; |
324 |
Xirr += -U[i] * Cij * U[j]; |
325 |
} |
326 |
} |
327 |
|
328 |
const double convertConstant = 6.023; //convert poise.angstrom to amu/fs |
329 |
Xitt *= convertConstant; |
330 |
Xitr *= convertConstant; |
331 |
Xirr *= convertConstant; |
332 |
|
333 |
double kt = OOPSEConstant::kB * temperature; |
334 |
|
335 |
Mat3x3d Dott; //translational diffusion tensor at arbitrary origin O |
336 |
Mat3x3d Dorr; //rotational diffusion tensor at arbitrary origin O |
337 |
Mat3x3d Dotr; //translation-rotation couplingl diffusion tensor at arbitrary origin O |
338 |
|
339 |
const static Mat3x3d zeroMat(0.0); |
340 |
|
341 |
Mat3x3d XittInv(0.0); |
342 |
XittInv = Xitt.inverse(); |
343 |
|
344 |
Mat3x3d XirrInv; |
345 |
XirrInv = Xirr.inverse(); |
346 |
|
347 |
Mat3x3d tmp; |
348 |
Mat3x3d tmpInv; |
349 |
tmp = Xitt - Xitr.transpose() * XirrInv * Xitr; |
350 |
tmpInv = tmp.inverse(); |
351 |
|
352 |
Dott = tmpInv; |
353 |
Dotr = -XirrInv * Xitr * tmpInv; |
354 |
|
355 |
tmp = Xirr - Xitr * XittInv * Xitr.transpose(); |
356 |
tmpInv = tmp.inverse(); |
357 |
|
358 |
Dorr = tmpInv; |
359 |
|
360 |
//calculate center of diffusion |
361 |
tmp(0, 0) = Dorr(1, 1) + Dorr(2, 2); |
362 |
tmp(0, 1) = - Dorr(0, 1); |
363 |
tmp(0, 2) = -Dorr(0, 2); |
364 |
tmp(1, 0) = -Dorr(0, 1); |
365 |
tmp(1, 1) = Dorr(0, 0) + Dorr(2, 2); |
366 |
tmp(1, 2) = -Dorr(1, 2); |
367 |
tmp(2, 0) = -Dorr(0, 2); |
368 |
tmp(2, 1) = -Dorr(1, 2); |
369 |
tmp(2, 2) = Dorr(1, 1) + Dorr(0, 0); |
370 |
|
371 |
Vector3d tmpVec; |
372 |
tmpVec[0] = Dotr(1, 2) - Dotr(2, 1); |
373 |
tmpVec[1] = Dotr(2, 0) - Dotr(0, 2); |
374 |
tmpVec[2] = Dotr(0, 1) - Dotr(1, 0); |
375 |
|
376 |
tmpInv = tmp.inverse(); |
377 |
|
378 |
Vector3d rod = tmpInv * tmpVec; |
379 |
|
380 |
//calculate Diffusion Tensor at center of diffusion |
381 |
Mat3x3d Uod; |
382 |
Uod.setupSkewMat(rod); |
383 |
|
384 |
Mat3x3d Ddtt; //translational diffusion tensor at diffusion center |
385 |
Mat3x3d Ddtr; //rotational diffusion tensor at diffusion center |
386 |
Mat3x3d Ddrr; //translation-rotation couplingl diffusion tensor at diffusion tensor |
387 |
|
388 |
Ddtt = Dott - Uod * Dorr * Uod + Dotr.transpose() * Uod - Uod * Dotr; |
389 |
Ddrr = Dorr; |
390 |
Ddtr = Dotr + Dorr * Uod; |
391 |
|
392 |
SquareMatrix<double, 6> Dd; |
393 |
Dd.setSubMatrix(0, 0, Ddtt); |
394 |
Dd.setSubMatrix(0, 3, Ddtr.transpose()); |
395 |
Dd.setSubMatrix(3, 0, Ddtr); |
396 |
Dd.setSubMatrix(3, 3, Ddrr); |
397 |
SquareMatrix<double, 6> Xid; |
398 |
Ddtt *= kt; |
399 |
Ddtr *=kt; |
400 |
Ddrr *= kt; |
401 |
invertMatrix(Dd, Xid); |
402 |
|
403 |
|
404 |
|
405 |
//Xidtt in units of kcal*fs*mol^-1*Ang^-2 |
406 |
//Xid /= OOPSEConstant::energyConvert; |
407 |
Xid *= OOPSEConstant::kb * temperature; |
408 |
|
409 |
cr.center = rod; |
410 |
cr.D.setSubMatrix(0, 0, Ddtt); |
411 |
cr.D.setSubMatrix(0, 3, Ddtr); |
412 |
cr.D.setSubMatrix(3, 0, Ddtr); |
413 |
cr.D.setSubMatrix(3, 3, Ddrr); |
414 |
cr.Xi = Xid; |
415 |
|
416 |
std::cout << "viscosity = " << viscosity << std::endl; |
417 |
std::cout << "temperature = " << temperature << std::endl; |
418 |
std::cout << "center of diffusion :" << std::endl; |
419 |
std::cout << rod << std::endl; |
420 |
std::cout << "diffusion tensor at center of diffusion " << std::endl; |
421 |
std::cout << "translation(A^2/fs) :" << std::endl; |
422 |
std::cout << Ddtt << std::endl; |
423 |
std::cout << "translation-rotation(A^3/fs):" << std::endl; |
424 |
std::cout << Ddtr << std::endl; |
425 |
std::cout << "rotation(A^4/fs):" << std::endl; |
426 |
std::cout << Ddrr << std::endl; |
427 |
|
428 |
std::cout << "resistance tensor at center of diffusion " << std::endl; |
429 |
std::cout << "translation(kcal*fs*mol^-1*Ang^-2) :" << std::endl; |
430 |
|
431 |
Mat3x3d Xidtt; |
432 |
Mat3x3d Xidrt; |
433 |
Mat3x3d Xidtr; |
434 |
Mat3x3d Xidrr; |
435 |
Xid.getSubMatrix(0, 0, Xidtt); |
436 |
Xid.getSubMatrix(0, 3, Xidrt); |
437 |
Xid.getSubMatrix(3, 0, Xidtr); |
438 |
Xid.getSubMatrix(3, 3, Xidrr); |
439 |
|
440 |
std::cout << Xidtt << std::endl; |
441 |
std::cout << "rotation-translation (kcal*fs*mol^-1*Ang^-3):" << std::endl; |
442 |
std::cout << Xidrt << std::endl; |
443 |
std::cout << "translation-rotation(kcal*fs*mol^-1*Ang^-3):" << std::endl; |
444 |
std::cout << Xidtr << std::endl; |
445 |
std::cout << "rotation(kcal*fs*mol^-1*Ang^-4):" << std::endl; |
446 |
std::cout << Xidrr << std::endl; |
447 |
|
448 |
return true; |
449 |
|
450 |
} |
451 |
|
452 |
|
453 |
void ApproximationModel::writeBeads(std::ostream& os) { |
454 |
std::vector<BeadParam>::iterator iter; |
455 |
os << beads_.size() << std::endl; |
456 |
os << "Generated by Hydro" << std::endl; |
457 |
for (iter = beads_.begin(); iter != beads_.end(); ++iter) { |
458 |
os << iter->atomName << "\t" << iter->pos[0] << "\t" << iter->pos[1] << "\t" << iter->pos[2] << std::endl; |
459 |
} |
460 |
|
461 |
} |
462 |
|
463 |
|
464 |
|
465 |
} |