44 |
|
#include "math/DynamicRectMatrix.hpp" |
45 |
|
#include "math/SquareMatrix3.hpp" |
46 |
|
#include "utils/OOPSEConstant.hpp" |
47 |
< |
#include "applications/hydrodynamics/Spheric.hpp" |
48 |
< |
#include "applications/hydrodynamics/Ellipsoid.hpp" |
47 |
> |
#include "hydrodynamics/Sphere.hpp" |
48 |
> |
#include "hydrodynamics/Ellipsoid.hpp" |
49 |
|
#include "applications/hydrodynamics/CompositeShape.hpp" |
50 |
|
#include "math/LU.hpp" |
51 |
|
#include "utils/simError.h" |
57 |
|
* Biophysical Journal, 75(6), 3044, 1999 |
58 |
|
*/ |
59 |
|
|
60 |
< |
ApproximationModel::ApproximationModel(StuntDouble* sd, SimInfo* info): HydrodynamicsModel(sd, info){ |
61 |
< |
|
62 |
< |
} |
63 |
< |
|
64 |
< |
bool ApproximationModel::calcHydroProps(Spheric* spheric, double viscosity, double temperature) { |
65 |
< |
return internalCalcHydroProps(static_cast<Shape*>(spheric), viscosity, temperature); |
66 |
< |
} |
67 |
< |
|
68 |
< |
bool ApproximationModel::calcHydroProps(Ellipsoid* ellipsoid, double viscosity, double temperature) { |
69 |
< |
return internalCalcHydroProps(static_cast<Shape*>(ellipsoid), viscosity, temperature); |
70 |
< |
} |
71 |
< |
bool ApproximationModel::calcHydroProps(CompositeShape* compositeShape, double viscosity, double temperature) { |
72 |
< |
return internalCalcHydroProps(static_cast<Shape*>(compositeShape), viscosity, temperature); |
73 |
< |
} |
74 |
< |
|
75 |
< |
void ApproximationModel::init() { |
60 |
> |
ApproximationModel::ApproximationModel(StuntDouble* sd, SimInfo* info): HydrodynamicsModel(sd, info){ |
61 |
> |
} |
62 |
> |
|
63 |
> |
void ApproximationModel::init() { |
64 |
|
if (!createBeads(beads_)) { |
65 |
|
sprintf(painCave.errMsg, "ApproximationModel::init() : Can not create beads\n"); |
66 |
|
painCave.isFatal = 1; |
67 |
|
simError(); |
68 |
|
} |
69 |
< |
|
70 |
< |
} |
71 |
< |
|
72 |
< |
bool ApproximationModel::internalCalcHydroProps(Shape* shape, double viscosity, double temperature) { |
73 |
< |
|
69 |
> |
|
70 |
> |
} |
71 |
> |
|
72 |
> |
bool ApproximationModel::calcHydroProps(Shape* shape, RealType viscosity, RealType temperature) { |
73 |
> |
|
74 |
|
bool ret = true; |
75 |
< |
HydroProps cr; |
76 |
< |
HydroProps cd; |
75 |
> |
HydroProp* cr; |
76 |
> |
HydroProp* cd; |
77 |
|
calcHydroPropsAtCR(beads_, viscosity, temperature, cr); |
78 |
|
//calcHydroPropsAtCD(beads_, viscosity, temperature, cd); |
79 |
|
setCR(cr); |
80 |
|
setCD(cd); |
81 |
|
|
82 |
|
return true; |
83 |
< |
} |
84 |
< |
|
85 |
< |
bool ApproximationModel::calcHydroPropsAtCR(std::vector<BeadParam>& beads, double viscosity, double temperature, HydroProps& cr) { |
86 |
< |
|
83 |
> |
} |
84 |
> |
|
85 |
> |
bool ApproximationModel::calcHydroPropsAtCR(std::vector<BeadParam>& beads, RealType viscosity, RealType temperature, HydroProp* cr) { |
86 |
> |
|
87 |
|
int nbeads = beads.size(); |
88 |
< |
DynamicRectMatrix<double> B(3*nbeads, 3*nbeads); |
89 |
< |
DynamicRectMatrix<double> C(3*nbeads, 3*nbeads); |
88 |
> |
DynamicRectMatrix<RealType> B(3*nbeads, 3*nbeads); |
89 |
> |
DynamicRectMatrix<RealType> C(3*nbeads, 3*nbeads); |
90 |
|
Mat3x3d I; |
91 |
|
I(0, 0) = 1.0; |
92 |
|
I(1, 1) = 1.0; |
93 |
|
I(2, 2) = 1.0; |
94 |
|
|
95 |
|
for (std::size_t i = 0; i < nbeads; ++i) { |
96 |
< |
for (std::size_t j = 0; j < nbeads; ++j) { |
97 |
< |
Mat3x3d Tij; |
96 |
> |
for (std::size_t j = 0; j < nbeads; ++j) { |
97 |
> |
Mat3x3d Tij; |
98 |
|
if (i != j ) { |
99 |
< |
Vector3d Rij = beads[i].pos - beads[j].pos; |
100 |
< |
double rij = Rij.length(); |
101 |
< |
double rij2 = rij * rij; |
102 |
< |
double sumSigma2OverRij2 = ((beads[i].radius*beads[i].radius) + (beads[j].radius*beads[j].radius)) / rij2; |
103 |
< |
Mat3x3d tmpMat; |
104 |
< |
tmpMat = outProduct(Rij, Rij) / rij2; |
105 |
< |
double constant = 8.0 * NumericConstant::PI * viscosity * rij; |
106 |
< |
Tij = ((1.0 + sumSigma2OverRij2/3.0) * I + (1.0 - sumSigma2OverRij2) * tmpMat ) / constant; |
99 |
> |
Vector3d Rij = beads[i].pos - beads[j].pos; |
100 |
> |
RealType rij = Rij.length(); |
101 |
> |
RealType rij2 = rij * rij; |
102 |
> |
RealType sumSigma2OverRij2 = ((beads[i].radius*beads[i].radius) + (beads[j].radius*beads[j].radius)) / rij2; |
103 |
> |
Mat3x3d tmpMat; |
104 |
> |
tmpMat = outProduct(Rij, Rij) / rij2; |
105 |
> |
RealType constant = 8.0 * NumericConstant::PI * viscosity * rij; |
106 |
> |
RealType tmp1 = 1.0 + sumSigma2OverRij2/3.0; |
107 |
> |
RealType tmp2 = 1.0 - sumSigma2OverRij2; |
108 |
> |
Tij = (tmp1 * I + tmp2 * tmpMat ) / constant; |
109 |
|
}else { |
110 |
< |
double constant = 1.0 / (6.0 * NumericConstant::PI * viscosity * beads[i].radius); |
111 |
< |
Tij(0, 0) = constant; |
112 |
< |
Tij(1, 1) = constant; |
113 |
< |
Tij(2, 2) = constant; |
110 |
> |
RealType constant = 1.0 / (6.0 * NumericConstant::PI * viscosity * beads[i].radius); |
111 |
> |
Tij(0, 0) = constant; |
112 |
> |
Tij(1, 1) = constant; |
113 |
> |
Tij(2, 2) = constant; |
114 |
|
} |
115 |
|
B.setSubMatrix(i*3, j*3, Tij); |
116 |
< |
} |
116 |
> |
} |
117 |
|
} |
118 |
< |
|
118 |
> |
|
119 |
|
//invert B Matrix |
120 |
|
invertMatrix(B, C); |
121 |
|
|
122 |
|
//prepare U Matrix relative to arbitrary origin O(0.0, 0.0, 0.0) |
123 |
|
std::vector<Mat3x3d> U; |
124 |
|
for (int i = 0; i < nbeads; ++i) { |
125 |
< |
Mat3x3d currU; |
126 |
< |
currU.setupSkewMat(beads[i].pos); |
127 |
< |
U.push_back(currU); |
125 |
> |
Mat3x3d currU; |
126 |
> |
currU.setupSkewMat(beads[i].pos); |
127 |
> |
U.push_back(currU); |
128 |
|
} |
129 |
|
|
130 |
|
//calculate Xi matrix at arbitrary origin O |
131 |
|
Mat3x3d Xiott; |
132 |
|
Mat3x3d Xiorr; |
133 |
|
Mat3x3d Xiotr; |
134 |
< |
|
134 |
> |
|
135 |
|
//calculate the total volume |
136 |
< |
|
137 |
< |
double volume = 0.0; |
136 |
> |
|
137 |
> |
RealType volume = 0.0; |
138 |
|
for (std::vector<BeadParam>::iterator iter = beads.begin(); iter != beads.end(); ++iter) { |
139 |
< |
volume += 4.0/3.0 * NumericConstant::PI * pow((*iter).radius,3); |
139 |
> |
volume += 4.0/3.0 * NumericConstant::PI * pow((*iter).radius,3); |
140 |
|
} |
141 |
< |
|
141 |
> |
|
142 |
|
for (std::size_t i = 0; i < nbeads; ++i) { |
143 |
< |
for (std::size_t j = 0; j < nbeads; ++j) { |
144 |
< |
Mat3x3d Cij; |
145 |
< |
C.getSubMatrix(i*3, j*3, Cij); |
146 |
< |
|
147 |
< |
Xiott += Cij; |
148 |
< |
Xiotr += U[i] * Cij; |
149 |
< |
//Xiorr += -U[i] * Cij * U[j] + (6 * viscosity * volume) * I; |
150 |
< |
Xiorr += -U[i] * Cij * U[j]; |
151 |
< |
} |
143 |
> |
for (std::size_t j = 0; j < nbeads; ++j) { |
144 |
> |
Mat3x3d Cij; |
145 |
> |
C.getSubMatrix(i*3, j*3, Cij); |
146 |
> |
|
147 |
> |
Xiott += Cij; |
148 |
> |
Xiotr += U[i] * Cij; |
149 |
> |
//Xiorr += -U[i] * Cij * U[j] + (6 * viscosity * volume) * I; |
150 |
> |
Xiorr += -U[i] * Cij * U[j]; |
151 |
> |
} |
152 |
|
} |
153 |
< |
|
154 |
< |
const double convertConstant = 6.023; //convert poise.angstrom to amu/fs |
153 |
> |
|
154 |
> |
const RealType convertConstant = 6.023; //convert poise.angstrom to amu/fs |
155 |
|
Xiott *= convertConstant; |
156 |
|
Xiotr *= convertConstant; |
157 |
|
Xiorr *= convertConstant; |
158 |
|
|
169 |
– |
|
159 |
|
|
160 |
+ |
|
161 |
|
Mat3x3d tmp; |
162 |
|
Mat3x3d tmpInv; |
163 |
|
Vector3d tmpVec; |
187 |
|
Xirrr = Xiorr - Uor * Xiott * Uor + Xiotr * Uor - Uor * Xiotr.transpose(); |
188 |
|
|
189 |
|
|
190 |
< |
SquareMatrix<double,6> Xir6x6; |
191 |
< |
SquareMatrix<double,6> Dr6x6; |
190 |
> |
SquareMatrix<RealType,6> Xir6x6; |
191 |
> |
SquareMatrix<RealType,6> Dr6x6; |
192 |
|
|
193 |
|
Xir6x6.setSubMatrix(0, 0, Xirtt); |
194 |
|
Xir6x6.setSubMatrix(0, 3, Xirtr.transpose()); |
204 |
|
Dr6x6.getSubMatrix(0, 3, Drrt); |
205 |
|
Dr6x6.getSubMatrix(3, 0, Drtr); |
206 |
|
Dr6x6.getSubMatrix(3, 3, Drrr); |
207 |
< |
double kt = OOPSEConstant::kB * temperature ; |
207 |
> |
RealType kt = OOPSEConstant::kB * temperature ; |
208 |
|
Drtt *= kt; |
209 |
|
Drrt *= kt; |
210 |
|
Drtr *= kt; |
213 |
|
Xirtr *= OOPSEConstant::kb * temperature; |
214 |
|
Xirrr *= OOPSEConstant::kb * temperature; |
215 |
|
|
216 |
+ |
Mat6x6d Xi, D; |
217 |
|
|
218 |
< |
cr.center = ror; |
219 |
< |
cr.Xi.setSubMatrix(0, 0, Xirtt); |
220 |
< |
cr.Xi.setSubMatrix(0, 3, Xirtr); |
221 |
< |
cr.Xi.setSubMatrix(3, 0, Xirtr); |
222 |
< |
cr.Xi.setSubMatrix(3, 3, Xirrr); |
223 |
< |
cr.D.setSubMatrix(0, 0, Drtt); |
224 |
< |
cr.D.setSubMatrix(0, 3, Drrt); |
225 |
< |
cr.D.setSubMatrix(3, 0, Drtr); |
226 |
< |
cr.D.setSubMatrix(3, 3, Drrr); |
218 |
> |
cr->setCOR(ror); |
219 |
> |
|
220 |
> |
Xi.setSubMatrix(0, 0, Xirtt); |
221 |
> |
Xi.setSubMatrix(0, 3, Xirtr); |
222 |
> |
Xi.setSubMatrix(3, 0, Xirtr); |
223 |
> |
Xi.setSubMatrix(3, 3, Xirrr); |
224 |
> |
|
225 |
> |
cr->setXi(Xi); |
226 |
> |
|
227 |
> |
D.setSubMatrix(0, 0, Drtt); |
228 |
> |
D.setSubMatrix(0, 3, Drrt); |
229 |
> |
D.setSubMatrix(3, 0, Drtr); |
230 |
> |
D.setSubMatrix(3, 3, Drrr); |
231 |
> |
|
232 |
> |
cr->setD(D); |
233 |
|
|
234 |
|
std::cout << "-----------------------------------------\n"; |
235 |
|
std::cout << "center of resistance :" << std::endl; |
254 |
|
|
255 |
|
return true; |
256 |
|
} |
257 |
< |
|
258 |
< |
bool ApproximationModel::calcHydroPropsAtCD(std::vector<BeadParam>& beads, double viscosity, double temperature, HydroProps& cr) { |
259 |
< |
|
257 |
> |
|
258 |
> |
bool ApproximationModel::calcHydroPropsAtCD(std::vector<BeadParam>& beads, RealType viscosity, RealType temperature, HydroProp* cr) { |
259 |
> |
|
260 |
|
int nbeads = beads.size(); |
261 |
< |
DynamicRectMatrix<double> B(3*nbeads, 3*nbeads); |
262 |
< |
DynamicRectMatrix<double> C(3*nbeads, 3*nbeads); |
261 |
> |
DynamicRectMatrix<RealType> B(3*nbeads, 3*nbeads); |
262 |
> |
DynamicRectMatrix<RealType> C(3*nbeads, 3*nbeads); |
263 |
|
Mat3x3d I; |
264 |
|
I(0, 0) = 1.0; |
265 |
|
I(1, 1) = 1.0; |
266 |
|
I(2, 2) = 1.0; |
267 |
|
|
268 |
|
for (std::size_t i = 0; i < nbeads; ++i) { |
269 |
< |
for (std::size_t j = 0; j < nbeads; ++j) { |
270 |
< |
Mat3x3d Tij; |
271 |
< |
if (i != j ) { |
272 |
< |
Vector3d Rij = beads[i].pos - beads[j].pos; |
273 |
< |
double rij = Rij.length(); |
274 |
< |
double rij2 = rij * rij; |
275 |
< |
double sumSigma2OverRij2 = ((beads[i].radius*beads[i].radius) + (beads[j].radius*beads[j].radius)) / rij2; |
276 |
< |
Mat3x3d tmpMat; |
277 |
< |
tmpMat = outProduct(Rij, Rij) / rij2; |
278 |
< |
double constant = 8.0 * NumericConstant::PI * viscosity * rij; |
279 |
< |
Tij = ((1.0 + sumSigma2OverRij2/3.0) * I + (1.0 - sumSigma2OverRij2) * tmpMat ) / constant; |
280 |
< |
}else { |
281 |
< |
double constant = 1.0 / (6.0 * NumericConstant::PI * viscosity * beads[i].radius); |
282 |
< |
Tij(0, 0) = constant; |
283 |
< |
Tij(1, 1) = constant; |
284 |
< |
Tij(2, 2) = constant; |
285 |
< |
} |
286 |
< |
B.setSubMatrix(i*3, j*3, Tij); |
269 |
> |
for (std::size_t j = 0; j < nbeads; ++j) { |
270 |
> |
Mat3x3d Tij; |
271 |
> |
if (i != j ) { |
272 |
> |
Vector3d Rij = beads[i].pos - beads[j].pos; |
273 |
> |
RealType rij = Rij.length(); |
274 |
> |
RealType rij2 = rij * rij; |
275 |
> |
RealType sumSigma2OverRij2 = ((beads[i].radius*beads[i].radius) + (beads[j].radius*beads[j].radius)) / rij2; |
276 |
> |
Mat3x3d tmpMat; |
277 |
> |
tmpMat = outProduct(Rij, Rij) / rij2; |
278 |
> |
RealType constant = 8.0 * NumericConstant::PI * viscosity * rij; |
279 |
> |
RealType tmp1 = 1.0 + sumSigma2OverRij2/3.0; |
280 |
> |
RealType tmp2 = 1.0 - sumSigma2OverRij2; |
281 |
> |
Tij = (tmp1 * I + tmp2 * tmpMat ) / constant; |
282 |
> |
}else { |
283 |
> |
RealType constant = 1.0 / (6.0 * NumericConstant::PI * viscosity * beads[i].radius); |
284 |
> |
Tij(0, 0) = constant; |
285 |
> |
Tij(1, 1) = constant; |
286 |
> |
Tij(2, 2) = constant; |
287 |
|
} |
288 |
+ |
B.setSubMatrix(i*3, j*3, Tij); |
289 |
+ |
} |
290 |
|
} |
291 |
< |
|
291 |
> |
|
292 |
|
//invert B Matrix |
293 |
|
invertMatrix(B, C); |
294 |
< |
|
294 |
> |
|
295 |
|
//prepare U Matrix relative to arbitrary origin O(0.0, 0.0, 0.0) |
296 |
|
std::vector<Mat3x3d> U; |
297 |
|
for (int i = 0; i < nbeads; ++i) { |
298 |
< |
Mat3x3d currU; |
299 |
< |
currU.setupSkewMat(beads[i].pos); |
300 |
< |
U.push_back(currU); |
298 |
> |
Mat3x3d currU; |
299 |
> |
currU.setupSkewMat(beads[i].pos); |
300 |
> |
U.push_back(currU); |
301 |
|
} |
302 |
|
|
303 |
|
//calculate Xi matrix at arbitrary origin O |
307 |
|
|
308 |
|
//calculate the total volume |
309 |
|
|
310 |
< |
double volume = 0.0; |
310 |
> |
RealType volume = 0.0; |
311 |
|
for (std::vector<BeadParam>::iterator iter = beads.begin(); iter != beads.end(); ++iter) { |
312 |
< |
volume += 4.0/3.0 * NumericConstant::PI * pow((*iter).radius,3); |
312 |
> |
volume += 4.0/3.0 * NumericConstant::PI * pow((*iter).radius,3); |
313 |
|
} |
314 |
< |
|
314 |
> |
|
315 |
|
for (std::size_t i = 0; i < nbeads; ++i) { |
316 |
< |
for (std::size_t j = 0; j < nbeads; ++j) { |
317 |
< |
Mat3x3d Cij; |
318 |
< |
C.getSubMatrix(i*3, j*3, Cij); |
316 |
> |
for (std::size_t j = 0; j < nbeads; ++j) { |
317 |
> |
Mat3x3d Cij; |
318 |
> |
C.getSubMatrix(i*3, j*3, Cij); |
319 |
|
|
320 |
< |
Xitt += Cij; |
321 |
< |
Xitr += U[i] * Cij; |
320 |
> |
Xitt += Cij; |
321 |
> |
Xitr += U[i] * Cij; |
322 |
|
//Xirr += -U[i] * Cij * U[j] + (6 * viscosity * volume) * I; |
323 |
< |
Xirr += -U[i] * Cij * U[j]; |
324 |
< |
} |
323 |
> |
Xirr += -U[i] * Cij * U[j]; |
324 |
> |
} |
325 |
|
} |
326 |
< |
|
327 |
< |
const double convertConstant = 6.023; //convert poise.angstrom to amu/fs |
326 |
> |
|
327 |
> |
const RealType convertConstant = 6.023; //convert poise.angstrom to amu/fs |
328 |
|
Xitt *= convertConstant; |
329 |
|
Xitr *= convertConstant; |
330 |
|
Xirr *= convertConstant; |
331 |
< |
|
332 |
< |
double kt = OOPSEConstant::kB * temperature; |
333 |
< |
|
331 |
> |
|
332 |
> |
RealType kt = OOPSEConstant::kB * temperature; |
333 |
> |
|
334 |
|
Mat3x3d Dott; //translational diffusion tensor at arbitrary origin O |
335 |
|
Mat3x3d Dorr; //rotational diffusion tensor at arbitrary origin O |
336 |
|
Mat3x3d Dotr; //translation-rotation couplingl diffusion tensor at arbitrary origin O |
337 |
< |
|
337 |
> |
|
338 |
|
const static Mat3x3d zeroMat(0.0); |
339 |
|
|
340 |
|
Mat3x3d XittInv(0.0); |
388 |
|
Ddrr = Dorr; |
389 |
|
Ddtr = Dotr + Dorr * Uod; |
390 |
|
|
391 |
< |
SquareMatrix<double, 6> Dd; |
391 |
> |
SquareMatrix<RealType, 6> Dd; |
392 |
|
Dd.setSubMatrix(0, 0, Ddtt); |
393 |
|
Dd.setSubMatrix(0, 3, Ddtr.transpose()); |
394 |
|
Dd.setSubMatrix(3, 0, Ddtr); |
395 |
|
Dd.setSubMatrix(3, 3, Ddrr); |
396 |
< |
SquareMatrix<double, 6> Xid; |
396 |
> |
SquareMatrix<RealType, 6> Xid; |
397 |
|
Ddtt *= kt; |
398 |
|
Ddtr *=kt; |
399 |
|
Ddrr *= kt; |
405 |
|
//Xid /= OOPSEConstant::energyConvert; |
406 |
|
Xid *= OOPSEConstant::kb * temperature; |
407 |
|
|
408 |
< |
cr.center = rod; |
410 |
< |
cr.D.setSubMatrix(0, 0, Ddtt); |
411 |
< |
cr.D.setSubMatrix(0, 3, Ddtr); |
412 |
< |
cr.D.setSubMatrix(3, 0, Ddtr); |
413 |
< |
cr.D.setSubMatrix(3, 3, Ddrr); |
414 |
< |
cr.Xi = Xid; |
408 |
> |
Mat6x6d Xi, D; |
409 |
|
|
410 |
+ |
cr->setCOR(rod); |
411 |
+ |
|
412 |
+ |
cr->setXi(Xid); |
413 |
+ |
|
414 |
+ |
D.setSubMatrix(0, 0, Ddtt); |
415 |
+ |
D.setSubMatrix(0, 3, Ddtr); |
416 |
+ |
D.setSubMatrix(3, 0, Ddtr); |
417 |
+ |
D.setSubMatrix(3, 3, Ddrr); |
418 |
+ |
|
419 |
+ |
cr->setD(D); |
420 |
+ |
|
421 |
|
std::cout << "viscosity = " << viscosity << std::endl; |
422 |
|
std::cout << "temperature = " << temperature << std::endl; |
423 |
|
std::cout << "center of diffusion :" << std::endl; |
451 |
|
std::cout << Xidrr << std::endl; |
452 |
|
|
453 |
|
return true; |
454 |
< |
|
455 |
< |
} |
454 |
> |
|
455 |
> |
} |
456 |
|
|
457 |
< |
|
453 |
< |
void ApproximationModel::writeBeads(std::ostream& os) { |
457 |
> |
void ApproximationModel::writeBeads(std::ostream& os) { |
458 |
|
std::vector<BeadParam>::iterator iter; |
459 |
|
os << beads_.size() << std::endl; |
460 |
|
os << "Generated by Hydro" << std::endl; |
461 |
|
for (iter = beads_.begin(); iter != beads_.end(); ++iter) { |
462 |
< |
os << iter->atomName << "\t" << iter->pos[0] << "\t" << iter->pos[1] << "\t" << iter->pos[2] << std::endl; |
462 |
> |
os << iter->atomName << "\t" << iter->pos[0] << "\t" << iter->pos[1] << "\t" << iter->pos[2] << std::endl; |
463 |
|
} |
464 |
< |
|
464 |
> |
|
465 |
> |
} |
466 |
|
} |
462 |
– |
|
463 |
– |
|
464 |
– |
|
465 |
– |
} |