39 |
|
* such damages. |
40 |
|
*/ |
41 |
|
#include "applications/hydrodynamics/AnalyticalModel.hpp" |
42 |
< |
#include "applications/hydrodynamics/Spheric.hpp" |
43 |
< |
#include "applications/hydrodynamics/Ellipsoid.hpp" |
42 |
> |
#include "hydrodynamics/Sphere.hpp" |
43 |
> |
#include "hydrodynamics/Ellipsoid.hpp" |
44 |
|
#include "applications/hydrodynamics/CompositeShape.hpp" |
45 |
|
#include "math/LU.hpp" |
46 |
|
namespace oopse { |
47 |
< |
bool AnalyticalModel::calcHydroProps(Spheric* spheric, double viscosity, double temperature) { |
48 |
< |
|
49 |
< |
double radius = spheric->getRadius(); |
50 |
< |
HydroProps props; |
51 |
< |
props.center =V3Zero; |
52 |
< |
double Xitt = 6.0 * NumericConstant::PI * viscosity * radius; |
53 |
< |
double Xirr = 8.0 * NumericConstant::PI * viscosity * radius * radius * radius; |
54 |
< |
props.Xi(0, 0) = Xitt; |
55 |
< |
props.Xi(1, 1) = Xitt; |
56 |
< |
props.Xi(2, 2) = Xitt; |
57 |
< |
props.Xi(3, 3) = Xirr; |
58 |
< |
props.Xi(4, 4) = Xirr; |
59 |
< |
props.Xi(5, 5) = Xirr; |
47 |
> |
|
48 |
> |
bool AnalyticalModel::calcHydroProps(Shape* shape, RealType viscosity, RealType temperature) { |
49 |
|
|
50 |
< |
const double convertConstant = 6.023; //convert poise.angstrom to amu/fs |
51 |
< |
props.Xi *= convertConstant; |
52 |
< |
Mat6x6d XiCopy = props.Xi; |
53 |
< |
invertMatrix(XiCopy, props.D); |
54 |
< |
double kt = OOPSEConstant::kB * temperature; |
55 |
< |
props.D *= kt; |
56 |
< |
props.Xi *= OOPSEConstant::kb * temperature; |
57 |
< |
|
58 |
< |
setCR(props); |
59 |
< |
setCD(props); |
60 |
< |
|
61 |
< |
return true; |
50 |
> |
HydroProp* props; |
51 |
> |
Sphere* sphere = dynamic_cast<Sphere*>(shape); |
52 |
> |
if (sphere != NULL) { |
53 |
> |
props = sphere->getHydroProp(viscosity, temperature); |
54 |
> |
setCR(props); |
55 |
> |
setCD(props); |
56 |
> |
return true; |
57 |
> |
} else { |
58 |
> |
Ellipsoid* ellipsoid = dynamic_cast<Ellipsoid*>(shape); |
59 |
> |
if (ellipsoid != NULL) { |
60 |
> |
props = ellipsoid->getHydroProp(viscosity, temperature); |
61 |
> |
setCR(props); |
62 |
> |
setCD(props); |
63 |
> |
return true; |
64 |
> |
} else { |
65 |
> |
CompositeShape* composite = dynamic_cast<CompositeShape*>(shape); |
66 |
> |
if (composite != NULL) { |
67 |
> |
// props = composite->getHydroProp(viscosity, temperature); |
68 |
> |
// setCR(props); |
69 |
> |
// setCD(props); |
70 |
> |
// return true; |
71 |
> |
return false; |
72 |
> |
} else { |
73 |
> |
sprintf( painCave.errMsg, |
74 |
> |
"Could not figure out what kind of shape this is!\n"); |
75 |
> |
painCave.severity = OOPSE_ERROR; |
76 |
> |
painCave.isFatal = 1; |
77 |
> |
simError(); |
78 |
> |
return false; |
79 |
> |
} |
80 |
> |
} |
81 |
> |
} |
82 |
> |
} |
83 |
|
|
84 |
+ |
void AnalyticalModel::writeBeads(std::ostream& os) { |
85 |
+ |
os << "1\n"; |
86 |
+ |
os << "Generated by Hydro\n"; |
87 |
+ |
Vector3d pos = sd_->getPos(); |
88 |
+ |
os << sd_->getType() << "\t" << pos[0] << "\t" << pos[1] << "\t" << pos[2] << std::endl; |
89 |
+ |
} |
90 |
|
} |
75 |
– |
|
76 |
– |
/** |
77 |
– |
* Reference: |
78 |
– |
* (2) F. Perrin , J. Phys. Radium, [7] 5, 497-511, 1934 |
79 |
– |
* (3) F. Perrin, J. Phys. Radium, [7] 7, 1-11, 1936 |
80 |
– |
*/ |
81 |
– |
bool AnalyticalModel::calcHydroProps(Ellipsoid* ellipsoid, double viscosity, double temperature) { |
82 |
– |
|
83 |
– |
double rMajor = ellipsoid->getRMajor(); |
84 |
– |
double rMinor = ellipsoid->getRMinor(); |
85 |
– |
|
86 |
– |
double a = rMinor; |
87 |
– |
double b = rMajor; |
88 |
– |
double a2 = a * a; |
89 |
– |
double b2 = b* b; |
90 |
– |
|
91 |
– |
double p = a /b; |
92 |
– |
double S; |
93 |
– |
if (p > 1.0) { //prolate |
94 |
– |
S = 2.0/sqrt(a2 - b2) * log((a + sqrt(a2-b2))/b); |
95 |
– |
} else { //oblate |
96 |
– |
S = 2.0/sqrt(b2 - a2) * atan(sqrt(b2-a2)/a); |
97 |
– |
} |
98 |
– |
|
99 |
– |
double P = 1.0/(a2 - b2) * (S - 2.0/a); |
100 |
– |
double Q = 0.5/(a2-b2) * (2.0*a/b2 - S); |
101 |
– |
|
102 |
– |
double transMinor = 16.0 * NumericConstant::PI * viscosity * (a2 - b2) /((2.0*a2-b2)*S -2.0*a); |
103 |
– |
double transMajor = 32.0 * NumericConstant::PI * viscosity * (a2 - b2) /((2.0*a2-3.0*b2)*S +2.0*a); |
104 |
– |
double rotMinor = 32.0/3.0 * NumericConstant::PI * viscosity *(a2 - b2) * b2 /(2.0*a -b2*S); |
105 |
– |
double rotMajor = 32.0/3.0 * NumericConstant::PI * viscosity *(a2*a2 - b2*b2)/((2.0*a2-b2)*S-2.0*a); |
106 |
– |
|
107 |
– |
|
108 |
– |
HydroProps props; |
109 |
– |
|
110 |
– |
props.Xi(0,0) = transMajor; |
111 |
– |
props.Xi(1,1) = transMajor; |
112 |
– |
props.Xi(2,2) = transMinor; |
113 |
– |
props.Xi(3,3) = rotMajor; |
114 |
– |
props.Xi(4,4) = rotMajor; |
115 |
– |
props.Xi(5,5) = rotMinor; |
116 |
– |
|
117 |
– |
const double convertConstant = 6.023; //convert poise.angstrom to amu/fs |
118 |
– |
props.Xi *= convertConstant; |
119 |
– |
|
120 |
– |
Mat6x6d XiCopy = props.Xi; |
121 |
– |
invertMatrix(XiCopy, props.D); |
122 |
– |
double kt = OOPSEConstant::kB * temperature; |
123 |
– |
props.D *= kt; |
124 |
– |
props.Xi *= OOPSEConstant::kb * temperature; |
125 |
– |
|
126 |
– |
setCR(props); |
127 |
– |
setCD(props); |
128 |
– |
|
129 |
– |
return true; |
130 |
– |
} |
131 |
– |
|
132 |
– |
bool AnalyticalModel::calcHydroProps(CompositeShape* compositexShape, double viscosity, double temperature) { |
133 |
– |
return false; |
134 |
– |
} |
135 |
– |
|
136 |
– |
|
137 |
– |
|
138 |
– |
} |