| 74 | 
  | 
} | 
| 75 | 
  | 
 | 
| 76 | 
  | 
/** | 
| 77 | 
– | 
 * calculate the ratio of friction coeffiction constant between ellipsoid and spheric  | 
| 78 | 
– | 
 * with same volume. | 
| 79 | 
– | 
 * @param m | 
| 80 | 
– | 
 * @param n  | 
| 81 | 
– | 
 * @note  | 
| 77 | 
  | 
 * Reference: | 
| 83 | 
– | 
 * | 
| 84 | 
– | 
 * (1) Victor A. Bloomfield, On-Line Biophysics Textbook, Volume: Separations and Hydrodynamics | 
| 85 | 
– | 
 * Chapter 1,Survey of Biomolecular Hydrodynamics | 
| 86 | 
– | 
 * http://www.biophysics.org/education/vbloomfield.pdf  | 
| 78 | 
  | 
 * (2) F. Perrin , J. Phys. Radium, [7] 5, 497-511, 1934 | 
| 79 | 
  | 
 * (3) F. Perrin, J. Phys. Radium, [7] 7, 1-11, 1936 | 
| 80 | 
  | 
 */         | 
| 81 | 
  | 
bool AnalyticalModel::calcHydroProps(Ellipsoid* ellipsoid, double viscosity, double temperature) { | 
| 82 | 
< | 
    double ft; | 
| 83 | 
< | 
    double fra; | 
| 84 | 
< | 
    double frb; | 
| 85 | 
< | 
    double a = ellipsoid->getA(); | 
| 86 | 
< | 
    double b = ellipsoid->getB(); | 
| 87 | 
< | 
    double q = a/b; //? | 
| 88 | 
< | 
    if (q > 1.0) {//prolate | 
| 89 | 
< | 
        ft = sqrt(1-q*q)/(pow(q, 2.0/3.0)*log((1 + sqrt(1-q*q))/q)); | 
| 90 | 
< | 
        fra = 4*(1-q*q)/(3*(2 - 2*pow(q, 4.0/3.0)/ft)); //not sure | 
| 91 | 
< | 
        frb = 4*(1-q*q*q*q) /(3*q*q*(2*pow(q, -2.0/3.0)*(2-q*q)/ft-2)); | 
| 92 | 
< | 
    } else {//oblate | 
| 93 | 
< | 
        ft = sqrt(1-q*q)/(pow(q, 2.0/3.0)*atan(sqrt(q*q-1))); | 
| 94 | 
< | 
        fra = 4*(1-q*q)/(3*(2 - 2*pow(q, 4.0/3.0)/ft)); //not sure | 
| 95 | 
< | 
        frb = 4*(1-q*q*q*q) /(3*q*q*(2*pow(q, -2.0/3.0)*(2-q*q)/ft-2)); | 
| 82 | 
> | 
 | 
| 83 | 
> | 
    double rMajor = ellipsoid->getRMajor(); | 
| 84 | 
> | 
    double rMinor = ellipsoid->getRMinor(); | 
| 85 | 
> | 
 | 
| 86 | 
> | 
    double a = rMinor; | 
| 87 | 
> | 
    double b = rMajor; | 
| 88 | 
> | 
    double a2 = a * a; | 
| 89 | 
> | 
    double b2 = b* b; | 
| 90 | 
> | 
     | 
| 91 | 
> | 
    double p = a /b; | 
| 92 | 
> | 
    double S; | 
| 93 | 
> | 
    if (p > 1.0) { //prolate | 
| 94 | 
> | 
        S = 2.0/sqrt(a2 - b2) * log((a + sqrt(a2-b2))/b); | 
| 95 | 
> | 
    } { //oblate | 
| 96 | 
> | 
        S = 2.0/sqrt(b2 - a2) * atan(sqrt(b2-a2)/a); | 
| 97 | 
  | 
    } | 
| 98 | 
< | 
                     | 
| 99 | 
< | 
    double radius = pow(a*a*b, 1.0/3.0); | 
| 98 | 
> | 
 | 
| 99 | 
> | 
    double P = 1.0/(a2 - b2) * (S - 2.0/a); | 
| 100 | 
> | 
    double Q = 0.5/(a2-b2) * (2.0*a/b2 - S); | 
| 101 | 
> | 
 | 
| 102 | 
> | 
    double transMinor = 16.0 * NumericConstant::PI * viscosity * (a2 - b2) /((2.0*a2-b2)*S -2.0*a); | 
| 103 | 
> | 
    double transMajor = 32.0 * NumericConstant::PI * viscosity * (a2 - b2) /((2.0*a2-3.0*b2)*S +2.0*a); | 
| 104 | 
> | 
    double rotMinor = 32.0/3.0 * NumericConstant::PI * viscosity *(a2 - b2) * b2 /(2.0*a -b2*S); | 
| 105 | 
> | 
    double rotMajor = 32.0/3.0 * NumericConstant::PI * viscosity *(a2*a2 - b2*b2)/((2.0*a2-b2)*S-2.0*a); | 
| 106 | 
> | 
     | 
| 107 | 
> | 
         | 
| 108 | 
  | 
    HydroProps props; | 
| 109 | 
< | 
    double Xitt  = 6.0 * NumericConstant::PI * viscosity * radius; | 
| 110 | 
< | 
    double Xirr = 8.0 * NumericConstant::PI * viscosity * radius * radius * radius; | 
| 111 | 
< | 
    props.Xi(0, 0) = Xitt; | 
| 112 | 
< | 
    props.Xi(1, 1) = Xitt; | 
| 113 | 
< | 
    props.Xi(2, 2) = Xitt; | 
| 114 | 
< | 
    props.Xi(3, 3) = Xirr; | 
| 115 | 
< | 
    props.Xi(4, 4) = Xirr; | 
| 116 | 
< | 
    props.Xi(5, 5) = Xirr; | 
| 109 | 
> | 
 | 
| 110 | 
> | 
    props.Xi(0,0) = transMajor; | 
| 111 | 
> | 
    props.Xi(1,1) = transMajor; | 
| 112 | 
> | 
    props.Xi(2,2) = transMinor; | 
| 113 | 
> | 
    props.Xi(3,3) = rotMajor; | 
| 114 | 
> | 
    props.Xi(4,4) = rotMajor; | 
| 115 | 
> | 
    props.Xi(5,5) = rotMinor; | 
| 116 | 
  | 
     | 
| 117 | 
  | 
    const double convertConstant = 6.023; //convert poise.angstrom to amu/fs | 
| 118 | 
  | 
    props.Xi *= convertConstant;     | 
| 120 | 
– | 
    props.Xi(0,0) *= ft; | 
| 121 | 
– | 
    props.Xi(1,1) *= ft; | 
| 122 | 
– | 
    props.Xi(2,2) *= ft; | 
| 123 | 
– | 
    props.Xi(3,3) *= fra; | 
| 124 | 
– | 
    props.Xi(4,4) *= fra; | 
| 125 | 
– | 
    props.Xi(5,5) *= frb; | 
| 119 | 
  | 
     | 
| 120 | 
  | 
    Mat6x6d XiCopy = props.Xi; | 
| 128 | 
– | 
    XiCopy /= OOPSEConstant::kb * temperature; | 
| 121 | 
  | 
    invertMatrix(XiCopy, props.D); | 
| 122 | 
  | 
    double kt = OOPSEConstant::kB * temperature; | 
| 123 | 
  | 
    props.D *= kt; | 
| 124 | 
< | 
 | 
| 124 | 
> | 
    props.Xi *= OOPSEConstant::kb * temperature; | 
| 125 | 
> | 
     | 
| 126 | 
  | 
    setCR(props); | 
| 127 | 
  | 
    setCD(props); | 
| 128 | 
  | 
 |