1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
|
42 |
/** |
43 |
* @file ForceField.cpp |
44 |
* @author tlin |
45 |
* @date 11/04/2004 |
46 |
* @time 22:51am |
47 |
* @version 1.0 |
48 |
*/ |
49 |
|
50 |
#include <algorithm> |
51 |
#include "UseTheForce/ForceField.hpp" |
52 |
#include "utils/simError.h" |
53 |
#include "utils/Tuple.hpp" |
54 |
#include "UseTheForce/DarkSide/atype_interface.h" |
55 |
#include "UseTheForce/DarkSide/fForceOptions_interface.h" |
56 |
#include "UseTheForce/DarkSide/switcheroo_interface.h" |
57 |
namespace OpenMD { |
58 |
|
59 |
ForceField::ForceField() { |
60 |
|
61 |
char* tempPath; |
62 |
tempPath = getenv("FORCE_PARAM_PATH"); |
63 |
|
64 |
if (tempPath == NULL) { |
65 |
//convert a macro from compiler to a string in c++ |
66 |
STR_DEFINE(ffPath_, FRC_PATH ); |
67 |
} else { |
68 |
ffPath_ = tempPath; |
69 |
} |
70 |
} |
71 |
|
72 |
|
73 |
ForceField::~ForceField() { |
74 |
deleteAtypes(); |
75 |
deleteSwitch(); |
76 |
} |
77 |
|
78 |
AtomType* ForceField::getAtomType(const std::string &at) { |
79 |
std::vector<std::string> keys; |
80 |
keys.push_back(at); |
81 |
return atomTypeCont_.find(keys); |
82 |
} |
83 |
|
84 |
BondType* ForceField::getBondType(const std::string &at1, |
85 |
const std::string &at2) { |
86 |
std::vector<std::string> keys; |
87 |
keys.push_back(at1); |
88 |
keys.push_back(at2); |
89 |
|
90 |
//try exact match first |
91 |
BondType* bondType = bondTypeCont_.find(keys); |
92 |
if (bondType) { |
93 |
return bondType; |
94 |
} else { |
95 |
AtomType* atype1; |
96 |
AtomType* atype2; |
97 |
std::vector<std::string> at1key; |
98 |
at1key.push_back(at1); |
99 |
atype1 = atomTypeCont_.find(at1key); |
100 |
|
101 |
std::vector<std::string> at2key; |
102 |
at2key.push_back(at2); |
103 |
atype2 = atomTypeCont_.find(at2key); |
104 |
|
105 |
// query atom types for their chains of responsibility |
106 |
std::vector<AtomType*> at1Chain = atype1->allYourBase(); |
107 |
std::vector<AtomType*> at2Chain = atype2->allYourBase(); |
108 |
|
109 |
std::vector<AtomType*>::iterator i; |
110 |
std::vector<AtomType*>::iterator j; |
111 |
|
112 |
int ii = 0; |
113 |
int jj = 0; |
114 |
int bondTypeScore; |
115 |
|
116 |
std::vector<std::pair<int, std::vector<std::string> > > foundBonds; |
117 |
|
118 |
for (i = at1Chain.begin(); i != at1Chain.end(); i++) { |
119 |
jj = 0; |
120 |
for (j = at2Chain.begin(); j != at2Chain.end(); j++) { |
121 |
|
122 |
bondTypeScore = ii + jj; |
123 |
|
124 |
std::vector<std::string> myKeys; |
125 |
myKeys.push_back((*i)->getName()); |
126 |
myKeys.push_back((*j)->getName()); |
127 |
|
128 |
BondType* bondType = bondTypeCont_.find(myKeys); |
129 |
if (bondType) { |
130 |
foundBonds.push_back(std::make_pair(bondTypeScore, myKeys)); |
131 |
} |
132 |
jj++; |
133 |
} |
134 |
ii++; |
135 |
} |
136 |
|
137 |
|
138 |
if (foundBonds.size() > 0) { |
139 |
// sort the foundBonds by the score: |
140 |
std::sort(foundBonds.begin(), foundBonds.end()); |
141 |
|
142 |
int bestScore = foundBonds[0].first; |
143 |
std::vector<std::string> theKeys = foundBonds[0].second; |
144 |
|
145 |
BondType* bestType = bondTypeCont_.find(theKeys); |
146 |
|
147 |
return bestType; |
148 |
} else { |
149 |
//if no exact match found, try wild card match |
150 |
return bondTypeCont_.find(keys, wildCardAtomTypeName_); |
151 |
} |
152 |
} |
153 |
} |
154 |
|
155 |
BendType* ForceField::getBendType(const std::string &at1, |
156 |
const std::string &at2, |
157 |
const std::string &at3) { |
158 |
std::vector<std::string> keys; |
159 |
keys.push_back(at1); |
160 |
keys.push_back(at2); |
161 |
keys.push_back(at3); |
162 |
|
163 |
//try exact match first |
164 |
BendType* bendType = bendTypeCont_.find(keys); |
165 |
if (bendType) { |
166 |
return bendType; |
167 |
} else { |
168 |
|
169 |
AtomType* atype1; |
170 |
AtomType* atype2; |
171 |
AtomType* atype3; |
172 |
std::vector<std::string> at1key; |
173 |
at1key.push_back(at1); |
174 |
atype1 = atomTypeCont_.find(at1key); |
175 |
|
176 |
std::vector<std::string> at2key; |
177 |
at2key.push_back(at2); |
178 |
atype2 = atomTypeCont_.find(at2key); |
179 |
|
180 |
std::vector<std::string> at3key; |
181 |
at3key.push_back(at3); |
182 |
atype3 = atomTypeCont_.find(at3key); |
183 |
|
184 |
// query atom types for their chains of responsibility |
185 |
std::vector<AtomType*> at1Chain = atype1->allYourBase(); |
186 |
std::vector<AtomType*> at2Chain = atype2->allYourBase(); |
187 |
std::vector<AtomType*> at3Chain = atype3->allYourBase(); |
188 |
|
189 |
std::vector<AtomType*>::iterator i; |
190 |
std::vector<AtomType*>::iterator j; |
191 |
std::vector<AtomType*>::iterator k; |
192 |
|
193 |
int ii = 0; |
194 |
int jj = 0; |
195 |
int kk = 0; |
196 |
int IKscore; |
197 |
|
198 |
std::vector<tuple3<int, int, std::vector<std::string> > > foundBends; |
199 |
|
200 |
for (j = at2Chain.begin(); j != at2Chain.end(); j++) { |
201 |
ii = 0; |
202 |
for (i = at1Chain.begin(); i != at1Chain.end(); i++) { |
203 |
kk = 0; |
204 |
for (k = at3Chain.begin(); k != at3Chain.end(); k++) { |
205 |
|
206 |
IKscore = ii + kk; |
207 |
|
208 |
std::vector<std::string> myKeys; |
209 |
myKeys.push_back((*i)->getName()); |
210 |
myKeys.push_back((*j)->getName()); |
211 |
myKeys.push_back((*k)->getName()); |
212 |
|
213 |
BendType* bendType = bendTypeCont_.find(myKeys); |
214 |
if (bendType) { |
215 |
foundBends.push_back( make_tuple3(jj, IKscore, myKeys) ); |
216 |
} |
217 |
kk++; |
218 |
} |
219 |
ii++; |
220 |
} |
221 |
jj++; |
222 |
} |
223 |
|
224 |
if (foundBends.size() > 0) { |
225 |
std::sort(foundBends.begin(), foundBends.end()); |
226 |
int jscore = foundBends[0].first; |
227 |
int ikscore = foundBends[0].second; |
228 |
std::vector<std::string> theKeys = foundBends[0].third; |
229 |
|
230 |
BendType* bestType = bendTypeCont_.find(theKeys); |
231 |
return bestType; |
232 |
} else { |
233 |
//if no exact match found, try wild card match |
234 |
return bendTypeCont_.find(keys, wildCardAtomTypeName_); |
235 |
} |
236 |
} |
237 |
} |
238 |
|
239 |
TorsionType* ForceField::getTorsionType(const std::string &at1, |
240 |
const std::string &at2, |
241 |
const std::string &at3, |
242 |
const std::string &at4) { |
243 |
std::vector<std::string> keys; |
244 |
keys.push_back(at1); |
245 |
keys.push_back(at2); |
246 |
keys.push_back(at3); |
247 |
keys.push_back(at4); |
248 |
|
249 |
|
250 |
//try exact match first |
251 |
TorsionType* torsionType = torsionTypeCont_.find(keys); |
252 |
if (torsionType) { |
253 |
return torsionType; |
254 |
} else { |
255 |
|
256 |
AtomType* atype1; |
257 |
AtomType* atype2; |
258 |
AtomType* atype3; |
259 |
AtomType* atype4; |
260 |
std::vector<std::string> at1key; |
261 |
at1key.push_back(at1); |
262 |
atype1 = atomTypeCont_.find(at1key); |
263 |
|
264 |
std::vector<std::string> at2key; |
265 |
at2key.push_back(at2); |
266 |
atype2 = atomTypeCont_.find(at2key); |
267 |
|
268 |
std::vector<std::string> at3key; |
269 |
at3key.push_back(at3); |
270 |
atype3 = atomTypeCont_.find(at3key); |
271 |
|
272 |
std::vector<std::string> at4key; |
273 |
at4key.push_back(at4); |
274 |
atype4 = atomTypeCont_.find(at4key); |
275 |
|
276 |
// query atom types for their chains of responsibility |
277 |
std::vector<AtomType*> at1Chain = atype1->allYourBase(); |
278 |
std::vector<AtomType*> at2Chain = atype2->allYourBase(); |
279 |
std::vector<AtomType*> at3Chain = atype3->allYourBase(); |
280 |
std::vector<AtomType*> at4Chain = atype4->allYourBase(); |
281 |
|
282 |
std::vector<AtomType*>::iterator i; |
283 |
std::vector<AtomType*>::iterator j; |
284 |
std::vector<AtomType*>::iterator k; |
285 |
std::vector<AtomType*>::iterator l; |
286 |
|
287 |
int ii = 0; |
288 |
int jj = 0; |
289 |
int kk = 0; |
290 |
int ll = 0; |
291 |
int ILscore; |
292 |
int JKscore; |
293 |
|
294 |
std::vector<tuple3<int, int, std::vector<std::string> > > foundTorsions; |
295 |
|
296 |
for (j = at2Chain.begin(); j != at2Chain.end(); j++) { |
297 |
kk = 0; |
298 |
for (k = at3Chain.begin(); k != at3Chain.end(); k++) { |
299 |
ii = 0; |
300 |
for (i = at1Chain.begin(); i != at1Chain.end(); i++) { |
301 |
ll = 0; |
302 |
for (l = at4Chain.begin(); l != at4Chain.end(); l++) { |
303 |
|
304 |
ILscore = ii + ll; |
305 |
JKscore = jj + kk; |
306 |
|
307 |
std::vector<std::string> myKeys; |
308 |
myKeys.push_back((*i)->getName()); |
309 |
myKeys.push_back((*j)->getName()); |
310 |
myKeys.push_back((*k)->getName()); |
311 |
myKeys.push_back((*l)->getName()); |
312 |
|
313 |
TorsionType* torsionType = torsionTypeCont_.find(myKeys); |
314 |
if (torsionType) { |
315 |
foundTorsions.push_back( make_tuple3(JKscore, ILscore, myKeys) ); |
316 |
} |
317 |
ll++; |
318 |
} |
319 |
ii++; |
320 |
} |
321 |
kk++; |
322 |
} |
323 |
jj++; |
324 |
} |
325 |
|
326 |
if (foundTorsions.size() > 0) { |
327 |
std::sort(foundTorsions.begin(), foundTorsions.end()); |
328 |
int jkscore = foundTorsions[0].first; |
329 |
int ilscore = foundTorsions[0].second; |
330 |
std::vector<std::string> theKeys = foundTorsions[0].third; |
331 |
|
332 |
TorsionType* bestType = torsionTypeCont_.find(theKeys); |
333 |
return bestType; |
334 |
} else { |
335 |
//if no exact match found, try wild card match |
336 |
return torsionTypeCont_.find(keys, wildCardAtomTypeName_); |
337 |
} |
338 |
} |
339 |
} |
340 |
|
341 |
InversionType* ForceField::getInversionType(const std::string &at1, |
342 |
const std::string &at2, |
343 |
const std::string &at3, |
344 |
const std::string &at4) { |
345 |
std::vector<std::string> keys; |
346 |
keys.push_back(at1); |
347 |
keys.push_back(at2); |
348 |
keys.push_back(at3); |
349 |
keys.push_back(at4); |
350 |
|
351 |
//try exact match first |
352 |
InversionType* inversionType = inversionTypeCont_.permutedFindSkippingFirstElement(keys); |
353 |
if (inversionType) { |
354 |
return inversionType; |
355 |
} else { |
356 |
|
357 |
AtomType* atype1; |
358 |
AtomType* atype2; |
359 |
AtomType* atype3; |
360 |
AtomType* atype4; |
361 |
std::vector<std::string> at1key; |
362 |
at1key.push_back(at1); |
363 |
atype1 = atomTypeCont_.find(at1key); |
364 |
|
365 |
std::vector<std::string> at2key; |
366 |
at2key.push_back(at2); |
367 |
atype2 = atomTypeCont_.find(at2key); |
368 |
|
369 |
std::vector<std::string> at3key; |
370 |
at3key.push_back(at3); |
371 |
atype3 = atomTypeCont_.find(at3key); |
372 |
|
373 |
std::vector<std::string> at4key; |
374 |
at4key.push_back(at4); |
375 |
atype4 = atomTypeCont_.find(at4key); |
376 |
|
377 |
// query atom types for their chains of responsibility |
378 |
std::vector<AtomType*> at1Chain = atype1->allYourBase(); |
379 |
std::vector<AtomType*> at2Chain = atype2->allYourBase(); |
380 |
std::vector<AtomType*> at3Chain = atype3->allYourBase(); |
381 |
std::vector<AtomType*> at4Chain = atype4->allYourBase(); |
382 |
|
383 |
std::vector<AtomType*>::iterator i; |
384 |
std::vector<AtomType*>::iterator j; |
385 |
std::vector<AtomType*>::iterator k; |
386 |
std::vector<AtomType*>::iterator l; |
387 |
|
388 |
int ii = 0; |
389 |
int jj = 0; |
390 |
int kk = 0; |
391 |
int ll = 0; |
392 |
int Iscore; |
393 |
int JKLscore; |
394 |
|
395 |
std::vector<tuple3<int, int, std::vector<std::string> > > foundInversions; |
396 |
|
397 |
for (j = at2Chain.begin(); j != at2Chain.end(); j++) { |
398 |
kk = 0; |
399 |
for (k = at3Chain.begin(); k != at3Chain.end(); k++) { |
400 |
ii = 0; |
401 |
for (i = at1Chain.begin(); i != at1Chain.end(); i++) { |
402 |
ll = 0; |
403 |
for (l = at4Chain.begin(); l != at4Chain.end(); l++) { |
404 |
|
405 |
Iscore = ii; |
406 |
JKLscore = jj + kk + ll; |
407 |
|
408 |
std::vector<std::string> myKeys; |
409 |
myKeys.push_back((*i)->getName()); |
410 |
myKeys.push_back((*j)->getName()); |
411 |
myKeys.push_back((*k)->getName()); |
412 |
myKeys.push_back((*l)->getName()); |
413 |
|
414 |
InversionType* inversionType = inversionTypeCont_.permutedFindSkippingFirstElement(myKeys); |
415 |
if (inversionType) { |
416 |
foundInversions.push_back( make_tuple3(Iscore, JKLscore, myKeys) ); |
417 |
} |
418 |
ll++; |
419 |
} |
420 |
ii++; |
421 |
} |
422 |
kk++; |
423 |
} |
424 |
jj++; |
425 |
} |
426 |
|
427 |
if (foundInversions.size() > 0) { |
428 |
std::sort(foundInversions.begin(), foundInversions.end()); |
429 |
int iscore = foundInversions[0].first; |
430 |
int jklscore = foundInversions[0].second; |
431 |
std::vector<std::string> theKeys = foundInversions[0].third; |
432 |
|
433 |
InversionType* bestType = inversionTypeCont_.permutedFindSkippingFirstElement(theKeys); |
434 |
return bestType; |
435 |
} else { |
436 |
//if no exact match found, try wild card match |
437 |
return inversionTypeCont_.find(keys, wildCardAtomTypeName_); |
438 |
} |
439 |
} |
440 |
} |
441 |
|
442 |
NonBondedInteractionType* ForceField::getNonBondedInteractionType(const std::string &at1, const std::string &at2) { |
443 |
|
444 |
std::vector<std::string> keys; |
445 |
keys.push_back(at1); |
446 |
keys.push_back(at2); |
447 |
|
448 |
//try exact match first |
449 |
NonBondedInteractionType* nbiType = nonBondedInteractionTypeCont_.find(keys); |
450 |
if (nbiType) { |
451 |
return nbiType; |
452 |
} else { |
453 |
AtomType* atype1; |
454 |
AtomType* atype2; |
455 |
std::vector<std::string> at1key; |
456 |
at1key.push_back(at1); |
457 |
atype1 = atomTypeCont_.find(at1key); |
458 |
|
459 |
std::vector<std::string> at2key; |
460 |
at2key.push_back(at2); |
461 |
atype2 = atomTypeCont_.find(at2key); |
462 |
|
463 |
// query atom types for their chains of responsibility |
464 |
std::vector<AtomType*> at1Chain = atype1->allYourBase(); |
465 |
std::vector<AtomType*> at2Chain = atype2->allYourBase(); |
466 |
|
467 |
std::vector<AtomType*>::iterator i; |
468 |
std::vector<AtomType*>::iterator j; |
469 |
|
470 |
int ii = 0; |
471 |
int jj = 0; |
472 |
int nbiTypeScore; |
473 |
|
474 |
std::vector<std::pair<int, std::vector<std::string> > > foundNBI; |
475 |
|
476 |
for (i = at1Chain.begin(); i != at1Chain.end(); i++) { |
477 |
jj = 0; |
478 |
for (j = at2Chain.begin(); j != at2Chain.end(); j++) { |
479 |
|
480 |
nbiTypeScore = ii + jj; |
481 |
|
482 |
std::vector<std::string> myKeys; |
483 |
myKeys.push_back((*i)->getName()); |
484 |
myKeys.push_back((*j)->getName()); |
485 |
|
486 |
NonBondedInteractionType* nbiType = nonBondedInteractionTypeCont_.find(myKeys); |
487 |
if (nbiType) { |
488 |
foundNBI.push_back(std::make_pair(nbiTypeScore, myKeys)); |
489 |
} |
490 |
jj++; |
491 |
} |
492 |
ii++; |
493 |
} |
494 |
|
495 |
|
496 |
if (foundNBI.size() > 0) { |
497 |
// sort the foundNBI by the score: |
498 |
std::sort(foundNBI.begin(), foundNBI.end()); |
499 |
|
500 |
int bestScore = foundNBI[0].first; |
501 |
std::vector<std::string> theKeys = foundNBI[0].second; |
502 |
|
503 |
NonBondedInteractionType* bestType = nonBondedInteractionTypeCont_.find(theKeys); |
504 |
return bestType; |
505 |
} else { |
506 |
//if no exact match found, try wild card match |
507 |
return nonBondedInteractionTypeCont_.find(keys, wildCardAtomTypeName_); |
508 |
} |
509 |
} |
510 |
} |
511 |
|
512 |
BondType* ForceField::getExactBondType(const std::string &at1, |
513 |
const std::string &at2){ |
514 |
std::vector<std::string> keys; |
515 |
keys.push_back(at1); |
516 |
keys.push_back(at2); |
517 |
return bondTypeCont_.find(keys); |
518 |
} |
519 |
|
520 |
BendType* ForceField::getExactBendType(const std::string &at1, |
521 |
const std::string &at2, |
522 |
const std::string &at3){ |
523 |
std::vector<std::string> keys; |
524 |
keys.push_back(at1); |
525 |
keys.push_back(at2); |
526 |
keys.push_back(at3); |
527 |
return bendTypeCont_.find(keys); |
528 |
} |
529 |
|
530 |
TorsionType* ForceField::getExactTorsionType(const std::string &at1, |
531 |
const std::string &at2, |
532 |
const std::string &at3, |
533 |
const std::string &at4){ |
534 |
std::vector<std::string> keys; |
535 |
keys.push_back(at1); |
536 |
keys.push_back(at2); |
537 |
keys.push_back(at3); |
538 |
keys.push_back(at4); |
539 |
return torsionTypeCont_.find(keys); |
540 |
} |
541 |
|
542 |
InversionType* ForceField::getExactInversionType(const std::string &at1, |
543 |
const std::string &at2, |
544 |
const std::string &at3, |
545 |
const std::string &at4){ |
546 |
std::vector<std::string> keys; |
547 |
keys.push_back(at1); |
548 |
keys.push_back(at2); |
549 |
keys.push_back(at3); |
550 |
keys.push_back(at4); |
551 |
return inversionTypeCont_.find(keys); |
552 |
} |
553 |
|
554 |
NonBondedInteractionType* ForceField::getExactNonBondedInteractionType(const std::string &at1, const std::string &at2){ |
555 |
std::vector<std::string> keys; |
556 |
keys.push_back(at1); |
557 |
keys.push_back(at2); |
558 |
return nonBondedInteractionTypeCont_.find(keys); |
559 |
} |
560 |
|
561 |
|
562 |
bool ForceField::addAtomType(const std::string &at, AtomType* atomType) { |
563 |
std::vector<std::string> keys; |
564 |
keys.push_back(at); |
565 |
return atomTypeCont_.add(keys, atomType); |
566 |
} |
567 |
|
568 |
bool ForceField::replaceAtomType(const std::string &at, AtomType* atomType) { |
569 |
std::vector<std::string> keys; |
570 |
keys.push_back(at); |
571 |
return atomTypeCont_.replace(keys, atomType); |
572 |
} |
573 |
|
574 |
bool ForceField::addBondType(const std::string &at1, const std::string &at2, |
575 |
BondType* bondType) { |
576 |
std::vector<std::string> keys; |
577 |
keys.push_back(at1); |
578 |
keys.push_back(at2); |
579 |
return bondTypeCont_.add(keys, bondType); |
580 |
} |
581 |
|
582 |
bool ForceField::addBendType(const std::string &at1, const std::string &at2, |
583 |
const std::string &at3, BendType* bendType) { |
584 |
std::vector<std::string> keys; |
585 |
keys.push_back(at1); |
586 |
keys.push_back(at2); |
587 |
keys.push_back(at3); |
588 |
return bendTypeCont_.add(keys, bendType); |
589 |
} |
590 |
|
591 |
bool ForceField::addTorsionType(const std::string &at1, |
592 |
const std::string &at2, |
593 |
const std::string &at3, |
594 |
const std::string &at4, |
595 |
TorsionType* torsionType) { |
596 |
std::vector<std::string> keys; |
597 |
keys.push_back(at1); |
598 |
keys.push_back(at2); |
599 |
keys.push_back(at3); |
600 |
keys.push_back(at4); |
601 |
return torsionTypeCont_.add(keys, torsionType); |
602 |
} |
603 |
|
604 |
bool ForceField::addInversionType(const std::string &at1, |
605 |
const std::string &at2, |
606 |
const std::string &at3, |
607 |
const std::string &at4, |
608 |
InversionType* inversionType) { |
609 |
std::vector<std::string> keys; |
610 |
keys.push_back(at1); |
611 |
keys.push_back(at2); |
612 |
keys.push_back(at3); |
613 |
keys.push_back(at4); |
614 |
return inversionTypeCont_.add(keys, inversionType); |
615 |
} |
616 |
|
617 |
bool ForceField::addNonBondedInteractionType(const std::string &at1, |
618 |
const std::string &at2, |
619 |
NonBondedInteractionType* nbiType) { |
620 |
std::vector<std::string> keys; |
621 |
keys.push_back(at1); |
622 |
keys.push_back(at2); |
623 |
return nonBondedInteractionTypeCont_.add(keys, nbiType); |
624 |
} |
625 |
|
626 |
RealType ForceField::getRcutFromAtomType(AtomType* at) { |
627 |
/**@todo */ |
628 |
GenericData* data; |
629 |
RealType rcut = 0.0; |
630 |
|
631 |
if (at->isLennardJones()) { |
632 |
data = at->getPropertyByName("LennardJones"); |
633 |
if (data != NULL) { |
634 |
LJParamGenericData* ljData = dynamic_cast<LJParamGenericData*>(data); |
635 |
|
636 |
if (ljData != NULL) { |
637 |
LJParam ljParam = ljData->getData(); |
638 |
|
639 |
//by default use 2.5*sigma as cutoff radius |
640 |
rcut = 2.5 * ljParam.sigma; |
641 |
|
642 |
} else { |
643 |
sprintf( painCave.errMsg, |
644 |
"Can not cast GenericData to LJParam\n"); |
645 |
painCave.severity = OPENMD_ERROR; |
646 |
painCave.isFatal = 1; |
647 |
simError(); |
648 |
} |
649 |
} else { |
650 |
sprintf( painCave.errMsg, "Can not find Parameters for LennardJones\n"); |
651 |
painCave.severity = OPENMD_ERROR; |
652 |
painCave.isFatal = 1; |
653 |
simError(); |
654 |
} |
655 |
} |
656 |
return rcut; |
657 |
} |
658 |
|
659 |
|
660 |
ifstrstream* ForceField::openForceFieldFile(const std::string& filename) { |
661 |
std::string forceFieldFilename(filename); |
662 |
ifstrstream* ffStream = new ifstrstream(); |
663 |
|
664 |
//try to open the force filed file in current directory first |
665 |
ffStream->open(forceFieldFilename.c_str()); |
666 |
if(!ffStream->is_open()){ |
667 |
|
668 |
forceFieldFilename = ffPath_ + "/" + forceFieldFilename; |
669 |
ffStream->open( forceFieldFilename.c_str() ); |
670 |
|
671 |
//if current directory does not contain the force field file, |
672 |
//try to open it in the path |
673 |
if(!ffStream->is_open()){ |
674 |
|
675 |
sprintf( painCave.errMsg, |
676 |
"Error opening the force field parameter file:\n" |
677 |
"\t%s\n" |
678 |
"\tHave you tried setting the FORCE_PARAM_PATH environment " |
679 |
"variable?\n", |
680 |
forceFieldFilename.c_str() ); |
681 |
painCave.severity = OPENMD_ERROR; |
682 |
painCave.isFatal = 1; |
683 |
simError(); |
684 |
} |
685 |
} |
686 |
return ffStream; |
687 |
} |
688 |
|
689 |
void ForceField::setFortranForceOptions(){ |
690 |
ForceOptions theseFortranOptions; |
691 |
forceFieldOptions_.makeFortranOptions(theseFortranOptions); |
692 |
setfForceOptions(&theseFortranOptions); |
693 |
} |
694 |
} //end namespace OpenMD |