1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Acknowledgement of the program authors must be made in any |
10 |
* publication of scientific results based in part on use of the |
11 |
* program. An acceptable form of acknowledgement is citation of |
12 |
* the article in which the program was described (Matthew |
13 |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
* |
18 |
* 2. Redistributions of source code must retain the above copyright |
19 |
* notice, this list of conditions and the following disclaimer. |
20 |
* |
21 |
* 3. Redistributions in binary form must reproduce the above copyright |
22 |
* notice, this list of conditions and the following disclaimer in the |
23 |
* documentation and/or other materials provided with the |
24 |
* distribution. |
25 |
* |
26 |
* This software is provided "AS IS," without a warranty of any |
27 |
* kind. All express or implied conditions, representations and |
28 |
* warranties, including any implied warranty of merchantability, |
29 |
* fitness for a particular purpose or non-infringement, are hereby |
30 |
* excluded. The University of Notre Dame and its licensors shall not |
31 |
* be liable for any damages suffered by licensee as a result of |
32 |
* using, modifying or distributing the software or its |
33 |
* derivatives. In no event will the University of Notre Dame or its |
34 |
* licensors be liable for any lost revenue, profit or data, or for |
35 |
* direct, indirect, special, consequential, incidental or punitive |
36 |
* damages, however caused and regardless of the theory of liability, |
37 |
* arising out of the use of or inability to use software, even if the |
38 |
* University of Notre Dame has been advised of the possibility of |
39 |
* such damages. |
40 |
*/ |
41 |
|
42 |
/** |
43 |
* @file ForceField.cpp |
44 |
* @author tlin |
45 |
* @date 11/04/2004 |
46 |
* @time 22:51am |
47 |
* @version 1.0 |
48 |
*/ |
49 |
|
50 |
#include <algorithm> |
51 |
#include "UseTheForce/ForceField.hpp" |
52 |
#include "utils/simError.h" |
53 |
#include "utils/Tuple.hpp" |
54 |
#include "UseTheForce/DarkSide/atype_interface.h" |
55 |
#include "UseTheForce/DarkSide/fForceOptions_interface.h" |
56 |
#include "UseTheForce/DarkSide/switcheroo_interface.h" |
57 |
namespace oopse { |
58 |
|
59 |
ForceField::ForceField() { |
60 |
char* tempPath; |
61 |
tempPath = getenv("FORCE_PARAM_PATH"); |
62 |
|
63 |
if (tempPath == NULL) { |
64 |
//convert a macro from compiler to a string in c++ |
65 |
STR_DEFINE(ffPath_, FRC_PATH ); |
66 |
} else { |
67 |
ffPath_ = tempPath; |
68 |
} |
69 |
} |
70 |
|
71 |
|
72 |
ForceField::~ForceField() { |
73 |
deleteAtypes(); |
74 |
deleteSwitch(); |
75 |
} |
76 |
|
77 |
AtomType* ForceField::getAtomType(const std::string &at) { |
78 |
std::vector<std::string> keys; |
79 |
keys.push_back(at); |
80 |
return atomTypeCont_.find(keys); |
81 |
} |
82 |
|
83 |
BondType* ForceField::getBondType(const std::string &at1, |
84 |
const std::string &at2) { |
85 |
std::vector<std::string> keys; |
86 |
keys.push_back(at1); |
87 |
keys.push_back(at2); |
88 |
|
89 |
//try exact match first |
90 |
BondType* bondType = bondTypeCont_.find(keys); |
91 |
if (bondType) { |
92 |
return bondType; |
93 |
} else { |
94 |
AtomType* atype1; |
95 |
AtomType* atype2; |
96 |
std::vector<std::string> at1key; |
97 |
at1key.push_back(at1); |
98 |
atype1 = atomTypeCont_.find(at1key); |
99 |
|
100 |
std::vector<std::string> at2key; |
101 |
at2key.push_back(at2); |
102 |
atype2 = atomTypeCont_.find(at2key); |
103 |
|
104 |
// query atom types for their chains of responsibility |
105 |
std::vector<AtomType*> at1Chain = atype1->allYourBase(); |
106 |
std::vector<AtomType*> at2Chain = atype2->allYourBase(); |
107 |
|
108 |
std::vector<AtomType*>::iterator i; |
109 |
std::vector<AtomType*>::iterator j; |
110 |
|
111 |
int ii = 0; |
112 |
int jj = 0; |
113 |
int bondTypeScore; |
114 |
|
115 |
std::vector<std::pair<int, std::vector<std::string> > > foundBonds; |
116 |
|
117 |
for (i = at1Chain.begin(); i != at1Chain.end(); i++) { |
118 |
jj = 0; |
119 |
for (j = at2Chain.begin(); j != at2Chain.end(); j++) { |
120 |
|
121 |
bondTypeScore = ii + jj; |
122 |
|
123 |
std::vector<std::string> myKeys; |
124 |
myKeys.push_back((*i)->getName()); |
125 |
myKeys.push_back((*j)->getName()); |
126 |
|
127 |
BondType* bondType = bondTypeCont_.find(myKeys); |
128 |
if (bondType) { |
129 |
foundBonds.push_back(std::make_pair(bondTypeScore, myKeys)); |
130 |
} |
131 |
jj++; |
132 |
} |
133 |
ii++; |
134 |
} |
135 |
|
136 |
|
137 |
if (foundBonds.size() > 0) { |
138 |
// sort the foundBonds by the score: |
139 |
std::sort(foundBonds.begin(), foundBonds.end()); |
140 |
|
141 |
int bestScore = foundBonds[0].first; |
142 |
std::vector<std::string> theKeys = foundBonds[0].second; |
143 |
|
144 |
BondType* bestType = bondTypeCont_.find(theKeys); |
145 |
|
146 |
return bestType; |
147 |
} else { |
148 |
//if no exact match found, try wild card match |
149 |
return bondTypeCont_.find(keys, wildCardAtomTypeName_); |
150 |
} |
151 |
} |
152 |
} |
153 |
|
154 |
BendType* ForceField::getBendType(const std::string &at1, |
155 |
const std::string &at2, |
156 |
const std::string &at3) { |
157 |
std::vector<std::string> keys; |
158 |
keys.push_back(at1); |
159 |
keys.push_back(at2); |
160 |
keys.push_back(at3); |
161 |
|
162 |
//try exact match first |
163 |
BendType* bendType = bendTypeCont_.find(keys); |
164 |
if (bendType) { |
165 |
return bendType; |
166 |
} else { |
167 |
|
168 |
AtomType* atype1; |
169 |
AtomType* atype2; |
170 |
AtomType* atype3; |
171 |
std::vector<std::string> at1key; |
172 |
at1key.push_back(at1); |
173 |
atype1 = atomTypeCont_.find(at1key); |
174 |
|
175 |
std::vector<std::string> at2key; |
176 |
at2key.push_back(at2); |
177 |
atype2 = atomTypeCont_.find(at2key); |
178 |
|
179 |
std::vector<std::string> at3key; |
180 |
at3key.push_back(at3); |
181 |
atype3 = atomTypeCont_.find(at3key); |
182 |
|
183 |
// query atom types for their chains of responsibility |
184 |
std::vector<AtomType*> at1Chain = atype1->allYourBase(); |
185 |
std::vector<AtomType*> at2Chain = atype2->allYourBase(); |
186 |
std::vector<AtomType*> at3Chain = atype3->allYourBase(); |
187 |
|
188 |
std::vector<AtomType*>::iterator i; |
189 |
std::vector<AtomType*>::iterator j; |
190 |
std::vector<AtomType*>::iterator k; |
191 |
|
192 |
int ii = 0; |
193 |
int jj = 0; |
194 |
int kk = 0; |
195 |
int IKscore; |
196 |
|
197 |
std::vector<tuple3<int, int, std::vector<std::string> > > foundBends; |
198 |
|
199 |
for (j = at2Chain.begin(); j != at2Chain.end(); j++) { |
200 |
ii = 0; |
201 |
for (i = at1Chain.begin(); i != at1Chain.end(); i++) { |
202 |
kk = 0; |
203 |
for (k = at3Chain.begin(); k != at3Chain.end(); k++) { |
204 |
|
205 |
IKscore = ii + kk; |
206 |
|
207 |
std::vector<std::string> myKeys; |
208 |
myKeys.push_back((*i)->getName()); |
209 |
myKeys.push_back((*j)->getName()); |
210 |
myKeys.push_back((*k)->getName()); |
211 |
|
212 |
BendType* bendType = bendTypeCont_.find(myKeys); |
213 |
if (bendType) { |
214 |
foundBends.push_back( make_tuple3(jj, IKscore, myKeys) ); |
215 |
} |
216 |
kk++; |
217 |
} |
218 |
ii++; |
219 |
} |
220 |
jj++; |
221 |
} |
222 |
|
223 |
if (foundBends.size() > 0) { |
224 |
std::sort(foundBends.begin(), foundBends.end()); |
225 |
int jscore = foundBends[0].first; |
226 |
int ikscore = foundBends[0].second; |
227 |
std::vector<std::string> theKeys = foundBends[0].third; |
228 |
|
229 |
BendType* bestType = bendTypeCont_.find(theKeys); |
230 |
return bestType; |
231 |
} else { |
232 |
//if no exact match found, try wild card match |
233 |
return bendTypeCont_.find(keys, wildCardAtomTypeName_); |
234 |
} |
235 |
} |
236 |
} |
237 |
|
238 |
TorsionType* ForceField::getTorsionType(const std::string &at1, |
239 |
const std::string &at2, |
240 |
const std::string &at3, |
241 |
const std::string &at4) { |
242 |
std::vector<std::string> keys; |
243 |
keys.push_back(at1); |
244 |
keys.push_back(at2); |
245 |
keys.push_back(at3); |
246 |
keys.push_back(at4); |
247 |
|
248 |
|
249 |
//try exact match first |
250 |
TorsionType* torsionType = torsionTypeCont_.find(keys); |
251 |
if (torsionType) { |
252 |
return torsionType; |
253 |
} else { |
254 |
|
255 |
AtomType* atype1; |
256 |
AtomType* atype2; |
257 |
AtomType* atype3; |
258 |
AtomType* atype4; |
259 |
std::vector<std::string> at1key; |
260 |
at1key.push_back(at1); |
261 |
atype1 = atomTypeCont_.find(at1key); |
262 |
|
263 |
std::vector<std::string> at2key; |
264 |
at2key.push_back(at2); |
265 |
atype2 = atomTypeCont_.find(at2key); |
266 |
|
267 |
std::vector<std::string> at3key; |
268 |
at3key.push_back(at3); |
269 |
atype3 = atomTypeCont_.find(at3key); |
270 |
|
271 |
std::vector<std::string> at4key; |
272 |
at4key.push_back(at4); |
273 |
atype4 = atomTypeCont_.find(at4key); |
274 |
|
275 |
// query atom types for their chains of responsibility |
276 |
std::vector<AtomType*> at1Chain = atype1->allYourBase(); |
277 |
std::vector<AtomType*> at2Chain = atype2->allYourBase(); |
278 |
std::vector<AtomType*> at3Chain = atype3->allYourBase(); |
279 |
std::vector<AtomType*> at4Chain = atype4->allYourBase(); |
280 |
|
281 |
std::vector<AtomType*>::iterator i; |
282 |
std::vector<AtomType*>::iterator j; |
283 |
std::vector<AtomType*>::iterator k; |
284 |
std::vector<AtomType*>::iterator l; |
285 |
|
286 |
int ii = 0; |
287 |
int jj = 0; |
288 |
int kk = 0; |
289 |
int ll = 0; |
290 |
int ILscore; |
291 |
int JKscore; |
292 |
|
293 |
std::vector<tuple3<int, int, std::vector<std::string> > > foundTorsions; |
294 |
|
295 |
for (j = at2Chain.begin(); j != at2Chain.end(); j++) { |
296 |
kk = 0; |
297 |
for (k = at3Chain.begin(); k != at3Chain.end(); k++) { |
298 |
ii = 0; |
299 |
for (i = at1Chain.begin(); i != at1Chain.end(); i++) { |
300 |
ll = 0; |
301 |
for (l = at4Chain.begin(); l != at4Chain.end(); l++) { |
302 |
|
303 |
ILscore = ii + ll; |
304 |
JKscore = jj + kk; |
305 |
|
306 |
std::vector<std::string> myKeys; |
307 |
myKeys.push_back((*i)->getName()); |
308 |
myKeys.push_back((*j)->getName()); |
309 |
myKeys.push_back((*k)->getName()); |
310 |
myKeys.push_back((*l)->getName()); |
311 |
|
312 |
TorsionType* torsionType = torsionTypeCont_.find(myKeys); |
313 |
if (torsionType) { |
314 |
foundTorsions.push_back( make_tuple3(JKscore, ILscore, myKeys) ); |
315 |
} |
316 |
ll++; |
317 |
} |
318 |
ii++; |
319 |
} |
320 |
kk++; |
321 |
} |
322 |
jj++; |
323 |
} |
324 |
|
325 |
if (foundTorsions.size() > 0) { |
326 |
std::sort(foundTorsions.begin(), foundTorsions.end()); |
327 |
int jkscore = foundTorsions[0].first; |
328 |
int ilscore = foundTorsions[0].second; |
329 |
std::vector<std::string> theKeys = foundTorsions[0].third; |
330 |
|
331 |
TorsionType* bestType = torsionTypeCont_.find(theKeys); |
332 |
return bestType; |
333 |
} else { |
334 |
//if no exact match found, try wild card match |
335 |
return torsionTypeCont_.find(keys, wildCardAtomTypeName_); |
336 |
} |
337 |
} |
338 |
} |
339 |
|
340 |
InversionType* ForceField::getInversionType(const std::string &at1, |
341 |
const std::string &at2, |
342 |
const std::string &at3, |
343 |
const std::string &at4) { |
344 |
std::vector<std::string> keys; |
345 |
keys.push_back(at1); |
346 |
keys.push_back(at2); |
347 |
keys.push_back(at3); |
348 |
keys.push_back(at4); |
349 |
|
350 |
//try exact match first |
351 |
InversionType* inversionType = inversionTypeCont_.permutedFindSkippingFirstElement(keys); |
352 |
if (inversionType) { |
353 |
return inversionType; |
354 |
} else { |
355 |
|
356 |
AtomType* atype1; |
357 |
AtomType* atype2; |
358 |
AtomType* atype3; |
359 |
AtomType* atype4; |
360 |
std::vector<std::string> at1key; |
361 |
at1key.push_back(at1); |
362 |
atype1 = atomTypeCont_.find(at1key); |
363 |
|
364 |
std::vector<std::string> at2key; |
365 |
at2key.push_back(at2); |
366 |
atype2 = atomTypeCont_.find(at2key); |
367 |
|
368 |
std::vector<std::string> at3key; |
369 |
at3key.push_back(at3); |
370 |
atype3 = atomTypeCont_.find(at3key); |
371 |
|
372 |
std::vector<std::string> at4key; |
373 |
at4key.push_back(at4); |
374 |
atype4 = atomTypeCont_.find(at4key); |
375 |
|
376 |
// query atom types for their chains of responsibility |
377 |
std::vector<AtomType*> at1Chain = atype1->allYourBase(); |
378 |
std::vector<AtomType*> at2Chain = atype2->allYourBase(); |
379 |
std::vector<AtomType*> at3Chain = atype3->allYourBase(); |
380 |
std::vector<AtomType*> at4Chain = atype4->allYourBase(); |
381 |
|
382 |
std::vector<AtomType*>::iterator i; |
383 |
std::vector<AtomType*>::iterator j; |
384 |
std::vector<AtomType*>::iterator k; |
385 |
std::vector<AtomType*>::iterator l; |
386 |
|
387 |
int ii = 0; |
388 |
int jj = 0; |
389 |
int kk = 0; |
390 |
int ll = 0; |
391 |
int Iscore; |
392 |
int JKLscore; |
393 |
|
394 |
std::vector<tuple3<int, int, std::vector<std::string> > > foundInversions; |
395 |
|
396 |
for (j = at2Chain.begin(); j != at2Chain.end(); j++) { |
397 |
kk = 0; |
398 |
for (k = at3Chain.begin(); k != at3Chain.end(); k++) { |
399 |
ii = 0; |
400 |
for (i = at1Chain.begin(); i != at1Chain.end(); i++) { |
401 |
ll = 0; |
402 |
for (l = at4Chain.begin(); l != at4Chain.end(); l++) { |
403 |
|
404 |
Iscore = ii; |
405 |
JKLscore = jj + kk + ll; |
406 |
|
407 |
std::vector<std::string> myKeys; |
408 |
myKeys.push_back((*i)->getName()); |
409 |
myKeys.push_back((*j)->getName()); |
410 |
myKeys.push_back((*k)->getName()); |
411 |
myKeys.push_back((*l)->getName()); |
412 |
|
413 |
InversionType* inversionType = inversionTypeCont_.permutedFindSkippingFirstElement(myKeys); |
414 |
if (inversionType) { |
415 |
foundInversions.push_back( make_tuple3(Iscore, JKLscore, myKeys) ); |
416 |
} |
417 |
ll++; |
418 |
} |
419 |
ii++; |
420 |
} |
421 |
kk++; |
422 |
} |
423 |
jj++; |
424 |
} |
425 |
|
426 |
if (foundInversions.size() > 0) { |
427 |
std::sort(foundInversions.begin(), foundInversions.end()); |
428 |
int iscore = foundInversions[0].first; |
429 |
int jklscore = foundInversions[0].second; |
430 |
std::vector<std::string> theKeys = foundInversions[0].third; |
431 |
|
432 |
InversionType* bestType = inversionTypeCont_.permutedFindSkippingFirstElement(theKeys); |
433 |
return bestType; |
434 |
} else { |
435 |
//if no exact match found, try wild card match |
436 |
return inversionTypeCont_.find(keys, wildCardAtomTypeName_); |
437 |
} |
438 |
} |
439 |
} |
440 |
|
441 |
NonBondedInteractionType* ForceField::getNonBondedInteractionType(const std::string &at1, const std::string &at2) { |
442 |
std::vector<std::string> keys; |
443 |
keys.push_back(at1); |
444 |
keys.push_back(at2); |
445 |
|
446 |
//try exact match first |
447 |
NonBondedInteractionType* nbiType = nonBondedInteractionTypeCont_.find(keys); |
448 |
if (nbiType) { |
449 |
return nbiType; |
450 |
} else { |
451 |
//if no exact match found, try wild card match |
452 |
return nonBondedInteractionTypeCont_.find(keys, wildCardAtomTypeName_); |
453 |
} |
454 |
} |
455 |
|
456 |
BondType* ForceField::getExactBondType(const std::string &at1, |
457 |
const std::string &at2){ |
458 |
std::vector<std::string> keys; |
459 |
keys.push_back(at1); |
460 |
keys.push_back(at2); |
461 |
return bondTypeCont_.find(keys); |
462 |
} |
463 |
|
464 |
BendType* ForceField::getExactBendType(const std::string &at1, |
465 |
const std::string &at2, |
466 |
const std::string &at3){ |
467 |
std::vector<std::string> keys; |
468 |
keys.push_back(at1); |
469 |
keys.push_back(at2); |
470 |
keys.push_back(at3); |
471 |
return bendTypeCont_.find(keys); |
472 |
} |
473 |
|
474 |
TorsionType* ForceField::getExactTorsionType(const std::string &at1, |
475 |
const std::string &at2, |
476 |
const std::string &at3, |
477 |
const std::string &at4){ |
478 |
std::vector<std::string> keys; |
479 |
keys.push_back(at1); |
480 |
keys.push_back(at2); |
481 |
keys.push_back(at3); |
482 |
keys.push_back(at4); |
483 |
return torsionTypeCont_.find(keys); |
484 |
} |
485 |
|
486 |
InversionType* ForceField::getExactInversionType(const std::string &at1, |
487 |
const std::string &at2, |
488 |
const std::string &at3, |
489 |
const std::string &at4){ |
490 |
std::vector<std::string> keys; |
491 |
keys.push_back(at1); |
492 |
keys.push_back(at2); |
493 |
keys.push_back(at3); |
494 |
keys.push_back(at4); |
495 |
return inversionTypeCont_.find(keys); |
496 |
} |
497 |
|
498 |
NonBondedInteractionType* ForceField::getExactNonBondedInteractionType(const std::string &at1, const std::string &at2){ |
499 |
std::vector<std::string> keys; |
500 |
keys.push_back(at1); |
501 |
keys.push_back(at2); |
502 |
return nonBondedInteractionTypeCont_.find(keys); |
503 |
} |
504 |
|
505 |
|
506 |
bool ForceField::addAtomType(const std::string &at, AtomType* atomType) { |
507 |
std::vector<std::string> keys; |
508 |
keys.push_back(at); |
509 |
return atomTypeCont_.add(keys, atomType); |
510 |
} |
511 |
|
512 |
bool ForceField::replaceAtomType(const std::string &at, AtomType* atomType) { |
513 |
std::vector<std::string> keys; |
514 |
keys.push_back(at); |
515 |
return atomTypeCont_.replace(keys, atomType); |
516 |
} |
517 |
|
518 |
bool ForceField::addBondType(const std::string &at1, const std::string &at2, |
519 |
BondType* bondType) { |
520 |
std::vector<std::string> keys; |
521 |
keys.push_back(at1); |
522 |
keys.push_back(at2); |
523 |
return bondTypeCont_.add(keys, bondType); |
524 |
} |
525 |
|
526 |
bool ForceField::addBendType(const std::string &at1, const std::string &at2, |
527 |
const std::string &at3, BendType* bendType) { |
528 |
std::vector<std::string> keys; |
529 |
keys.push_back(at1); |
530 |
keys.push_back(at2); |
531 |
keys.push_back(at3); |
532 |
return bendTypeCont_.add(keys, bendType); |
533 |
} |
534 |
|
535 |
bool ForceField::addTorsionType(const std::string &at1, |
536 |
const std::string &at2, |
537 |
const std::string &at3, |
538 |
const std::string &at4, |
539 |
TorsionType* torsionType) { |
540 |
std::vector<std::string> keys; |
541 |
keys.push_back(at1); |
542 |
keys.push_back(at2); |
543 |
keys.push_back(at3); |
544 |
keys.push_back(at4); |
545 |
return torsionTypeCont_.add(keys, torsionType); |
546 |
} |
547 |
|
548 |
bool ForceField::addInversionType(const std::string &at1, |
549 |
const std::string &at2, |
550 |
const std::string &at3, |
551 |
const std::string &at4, |
552 |
InversionType* inversionType) { |
553 |
std::vector<std::string> keys; |
554 |
keys.push_back(at1); |
555 |
keys.push_back(at2); |
556 |
keys.push_back(at3); |
557 |
keys.push_back(at4); |
558 |
return inversionTypeCont_.add(keys, inversionType); |
559 |
} |
560 |
|
561 |
bool ForceField::addNonBondedInteractionType(const std::string &at1, |
562 |
const std::string &at2, |
563 |
NonBondedInteractionType* nbiType) { |
564 |
std::vector<std::string> keys; |
565 |
keys.push_back(at1); |
566 |
keys.push_back(at2); |
567 |
return nonBondedInteractionTypeCont_.add(keys, nbiType); |
568 |
} |
569 |
|
570 |
RealType ForceField::getRcutFromAtomType(AtomType* at) { |
571 |
/**@todo */ |
572 |
GenericData* data; |
573 |
RealType rcut = 0.0; |
574 |
|
575 |
if (at->isLennardJones()) { |
576 |
data = at->getPropertyByName("LennardJones"); |
577 |
if (data != NULL) { |
578 |
LJParamGenericData* ljData = dynamic_cast<LJParamGenericData*>(data); |
579 |
|
580 |
if (ljData != NULL) { |
581 |
LJParam ljParam = ljData->getData(); |
582 |
|
583 |
//by default use 2.5*sigma as cutoff radius |
584 |
rcut = 2.5 * ljParam.sigma; |
585 |
|
586 |
} else { |
587 |
sprintf( painCave.errMsg, |
588 |
"Can not cast GenericData to LJParam\n"); |
589 |
painCave.severity = OOPSE_ERROR; |
590 |
painCave.isFatal = 1; |
591 |
simError(); |
592 |
} |
593 |
} else { |
594 |
sprintf( painCave.errMsg, "Can not find Parameters for LennardJones\n"); |
595 |
painCave.severity = OOPSE_ERROR; |
596 |
painCave.isFatal = 1; |
597 |
simError(); |
598 |
} |
599 |
} |
600 |
return rcut; |
601 |
} |
602 |
|
603 |
|
604 |
ifstrstream* ForceField::openForceFieldFile(const std::string& filename) { |
605 |
std::string forceFieldFilename(filename); |
606 |
ifstrstream* ffStream = new ifstrstream(); |
607 |
|
608 |
//try to open the force filed file in current directory first |
609 |
ffStream->open(forceFieldFilename.c_str()); |
610 |
if(!ffStream->is_open()){ |
611 |
|
612 |
forceFieldFilename = ffPath_ + "/" + forceFieldFilename; |
613 |
ffStream->open( forceFieldFilename.c_str() ); |
614 |
|
615 |
//if current directory does not contain the force field file, |
616 |
//try to open it in the path |
617 |
if(!ffStream->is_open()){ |
618 |
|
619 |
sprintf( painCave.errMsg, |
620 |
"Error opening the force field parameter file:\n" |
621 |
"\t%s\n" |
622 |
"\tHave you tried setting the FORCE_PARAM_PATH environment " |
623 |
"variable?\n", |
624 |
forceFieldFilename.c_str() ); |
625 |
painCave.severity = OOPSE_ERROR; |
626 |
painCave.isFatal = 1; |
627 |
simError(); |
628 |
} |
629 |
} |
630 |
return ffStream; |
631 |
} |
632 |
|
633 |
void ForceField::setFortranForceOptions(){ |
634 |
ForceOptions theseFortranOptions; |
635 |
forceFieldOptions_.makeFortranOptions(theseFortranOptions); |
636 |
setfForceOptions(&theseFortranOptions); |
637 |
} |
638 |
} //end namespace oopse |