1 |
gezelter |
246 |
!! |
2 |
|
|
!! Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
|
!! |
4 |
|
|
!! The University of Notre Dame grants you ("Licensee") a |
5 |
|
|
!! non-exclusive, royalty free, license to use, modify and |
6 |
|
|
!! redistribute this software in source and binary code form, provided |
7 |
|
|
!! that the following conditions are met: |
8 |
|
|
!! |
9 |
|
|
!! 1. Acknowledgement of the program authors must be made in any |
10 |
|
|
!! publication of scientific results based in part on use of the |
11 |
|
|
!! program. An acceptable form of acknowledgement is citation of |
12 |
|
|
!! the article in which the program was described (Matthew |
13 |
|
|
!! A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
|
|
!! J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
|
|
!! Parallel Simulation Engine for Molecular Dynamics," |
16 |
|
|
!! J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
|
|
!! |
18 |
|
|
!! 2. Redistributions of source code must retain the above copyright |
19 |
|
|
!! notice, this list of conditions and the following disclaimer. |
20 |
|
|
!! |
21 |
|
|
!! 3. Redistributions in binary form must reproduce the above copyright |
22 |
|
|
!! notice, this list of conditions and the following disclaimer in the |
23 |
|
|
!! documentation and/or other materials provided with the |
24 |
|
|
!! distribution. |
25 |
|
|
!! |
26 |
|
|
!! This software is provided "AS IS," without a warranty of any |
27 |
|
|
!! kind. All express or implied conditions, representations and |
28 |
|
|
!! warranties, including any implied warranty of merchantability, |
29 |
|
|
!! fitness for a particular purpose or non-infringement, are hereby |
30 |
|
|
!! excluded. The University of Notre Dame and its licensors shall not |
31 |
|
|
!! be liable for any damages suffered by licensee as a result of |
32 |
|
|
!! using, modifying or distributing the software or its |
33 |
|
|
!! derivatives. In no event will the University of Notre Dame or its |
34 |
|
|
!! licensors be liable for any lost revenue, profit or data, or for |
35 |
|
|
!! direct, indirect, special, consequential, incidental or punitive |
36 |
|
|
!! damages, however caused and regardless of the theory of liability, |
37 |
|
|
!! arising out of the use of or inability to use software, even if the |
38 |
|
|
!! University of Notre Dame has been advised of the possibility of |
39 |
|
|
!! such damages. |
40 |
|
|
!! |
41 |
|
|
|
42 |
gezelter |
115 |
!! This Module Calculates forces due to SSD potential and VDW interactions |
43 |
|
|
!! [Chandra and Ichiye, J. Chem. Phys. 111, 2701 (1999)]. |
44 |
|
|
|
45 |
|
|
!! This module contains the Public procedures: |
46 |
|
|
|
47 |
|
|
|
48 |
|
|
!! Corresponds to the force field defined in ssd_FF.cpp |
49 |
|
|
!! @author Charles F. Vardeman II |
50 |
|
|
!! @author Matthew Meineke |
51 |
chrisfen |
437 |
!! @author Christopher Fennell |
52 |
gezelter |
115 |
!! @author J. Daniel Gezelter |
53 |
chrisfen |
534 |
!! @version $Id: sticky.F90,v 1.11 2005-05-18 18:31:40 chrisfen Exp $, $Date: 2005-05-18 18:31:40 $, $Name: not supported by cvs2svn $, $Revision: 1.11 $ |
54 |
gezelter |
115 |
|
55 |
gezelter |
246 |
module sticky |
56 |
gezelter |
115 |
|
57 |
|
|
use force_globals |
58 |
|
|
use definitions |
59 |
gezelter |
246 |
use atype_module |
60 |
|
|
use vector_class |
61 |
gezelter |
115 |
use simulation |
62 |
gezelter |
246 |
use status |
63 |
gezelter |
115 |
#ifdef IS_MPI |
64 |
|
|
use mpiSimulation |
65 |
|
|
#endif |
66 |
|
|
implicit none |
67 |
|
|
|
68 |
|
|
PRIVATE |
69 |
|
|
|
70 |
gezelter |
246 |
public :: newStickyType |
71 |
gezelter |
115 |
public :: do_sticky_pair |
72 |
chuckv |
492 |
public :: destroyStickyTypes |
73 |
chrisfen |
523 |
public :: do_sticky_power_pair |
74 |
gezelter |
115 |
|
75 |
gezelter |
246 |
|
76 |
|
|
type :: StickyList |
77 |
|
|
integer :: c_ident |
78 |
|
|
real( kind = dp ) :: w0 = 0.0_dp |
79 |
|
|
real( kind = dp ) :: v0 = 0.0_dp |
80 |
|
|
real( kind = dp ) :: v0p = 0.0_dp |
81 |
|
|
real( kind = dp ) :: rl = 0.0_dp |
82 |
|
|
real( kind = dp ) :: ru = 0.0_dp |
83 |
|
|
real( kind = dp ) :: rlp = 0.0_dp |
84 |
|
|
real( kind = dp ) :: rup = 0.0_dp |
85 |
|
|
real( kind = dp ) :: rbig = 0.0_dp |
86 |
|
|
end type StickyList |
87 |
gezelter |
507 |
|
88 |
gezelter |
246 |
type(StickyList), dimension(:),allocatable :: StickyMap |
89 |
|
|
|
90 |
gezelter |
115 |
contains |
91 |
|
|
|
92 |
gezelter |
246 |
subroutine newStickyType(c_ident, w0, v0, v0p, rl, ru, rlp, rup, isError) |
93 |
gezelter |
115 |
|
94 |
gezelter |
246 |
integer, intent(in) :: c_ident |
95 |
|
|
integer, intent(inout) :: isError |
96 |
|
|
real( kind = dp ), intent(in) :: w0, v0, v0p |
97 |
|
|
real( kind = dp ), intent(in) :: rl, ru |
98 |
|
|
real( kind = dp ), intent(in) :: rlp, rup |
99 |
|
|
integer :: nATypes, myATID |
100 |
gezelter |
115 |
|
101 |
gezelter |
507 |
|
102 |
gezelter |
246 |
isError = 0 |
103 |
|
|
myATID = getFirstMatchingElement(atypes, "c_ident", c_ident) |
104 |
gezelter |
507 |
|
105 |
gezelter |
246 |
!! Be simple-minded and assume that we need a StickyMap that |
106 |
|
|
!! is the same size as the total number of atom types |
107 |
|
|
|
108 |
|
|
if (.not.allocated(StickyMap)) then |
109 |
|
|
|
110 |
|
|
nAtypes = getSize(atypes) |
111 |
|
|
|
112 |
|
|
if (nAtypes == 0) then |
113 |
|
|
isError = -1 |
114 |
|
|
return |
115 |
|
|
end if |
116 |
|
|
|
117 |
|
|
if (.not. allocated(StickyMap)) then |
118 |
|
|
allocate(StickyMap(nAtypes)) |
119 |
|
|
endif |
120 |
|
|
|
121 |
|
|
end if |
122 |
|
|
|
123 |
|
|
if (myATID .gt. size(StickyMap)) then |
124 |
|
|
isError = -1 |
125 |
|
|
return |
126 |
|
|
endif |
127 |
|
|
|
128 |
|
|
! set the values for StickyMap for this atom type: |
129 |
|
|
|
130 |
|
|
StickyMap(myATID)%c_ident = c_ident |
131 |
|
|
|
132 |
gezelter |
115 |
! we could pass all 5 parameters if we felt like it... |
133 |
gezelter |
507 |
|
134 |
gezelter |
246 |
StickyMap(myATID)%w0 = w0 |
135 |
|
|
StickyMap(myATID)%v0 = v0 |
136 |
|
|
StickyMap(myATID)%v0p = v0p |
137 |
|
|
StickyMap(myATID)%rl = rl |
138 |
|
|
StickyMap(myATID)%ru = ru |
139 |
|
|
StickyMap(myATID)%rlp = rlp |
140 |
|
|
StickyMap(myATID)%rup = rup |
141 |
gezelter |
115 |
|
142 |
gezelter |
246 |
if (StickyMap(myATID)%ru .gt. StickyMap(myATID)%rup) then |
143 |
|
|
StickyMap(myATID)%rbig = StickyMap(myATID)%ru |
144 |
gezelter |
115 |
else |
145 |
gezelter |
246 |
StickyMap(myATID)%rbig = StickyMap(myATID)%rup |
146 |
gezelter |
115 |
endif |
147 |
gezelter |
507 |
|
148 |
gezelter |
115 |
return |
149 |
gezelter |
246 |
end subroutine newStickyType |
150 |
gezelter |
115 |
|
151 |
|
|
subroutine do_sticky_pair(atom1, atom2, d, rij, r2, sw, vpair, fpair, & |
152 |
|
|
pot, A, f, t, do_pot) |
153 |
gezelter |
507 |
|
154 |
gezelter |
115 |
!! This routine does only the sticky portion of the SSD potential |
155 |
|
|
!! [Chandra and Ichiye, J. Chem. Phys. 111, 2701 (1999)]. |
156 |
|
|
!! The Lennard-Jones and dipolar interaction must be handled separately. |
157 |
gezelter |
507 |
|
158 |
gezelter |
115 |
!! We assume that the rotation matrices have already been calculated |
159 |
|
|
!! and placed in the A array. |
160 |
|
|
|
161 |
|
|
!! i and j are pointers to the two SSD atoms |
162 |
|
|
|
163 |
|
|
integer, intent(in) :: atom1, atom2 |
164 |
|
|
real (kind=dp), intent(inout) :: rij, r2 |
165 |
|
|
real (kind=dp), dimension(3), intent(in) :: d |
166 |
|
|
real (kind=dp), dimension(3), intent(inout) :: fpair |
167 |
|
|
real (kind=dp) :: pot, vpair, sw |
168 |
|
|
real (kind=dp), dimension(9,nLocal) :: A |
169 |
|
|
real (kind=dp), dimension(3,nLocal) :: f |
170 |
|
|
real (kind=dp), dimension(3,nLocal) :: t |
171 |
|
|
logical, intent(in) :: do_pot |
172 |
|
|
|
173 |
|
|
real (kind=dp) :: xi, yi, zi, xj, yj, zj, xi2, yi2, zi2, xj2, yj2, zj2 |
174 |
|
|
real (kind=dp) :: r3, r5, r6, s, sp, dsdr, dspdr |
175 |
|
|
real (kind=dp) :: wi, wj, w, wip, wjp, wp |
176 |
|
|
real (kind=dp) :: dwidx, dwidy, dwidz, dwjdx, dwjdy, dwjdz |
177 |
|
|
real (kind=dp) :: dwipdx, dwipdy, dwipdz, dwjpdx, dwjpdy, dwjpdz |
178 |
|
|
real (kind=dp) :: dwidux, dwiduy, dwiduz, dwjdux, dwjduy, dwjduz |
179 |
|
|
real (kind=dp) :: dwipdux, dwipduy, dwipduz, dwjpdux, dwjpduy, dwjpduz |
180 |
|
|
real (kind=dp) :: zif, zis, zjf, zjs, uglyi, uglyj |
181 |
|
|
real (kind=dp) :: drdx, drdy, drdz |
182 |
|
|
real (kind=dp) :: txi, tyi, tzi, txj, tyj, tzj |
183 |
|
|
real (kind=dp) :: fxii, fyii, fzii, fxjj, fyjj, fzjj |
184 |
|
|
real (kind=dp) :: fxij, fyij, fzij, fxji, fyji, fzji |
185 |
|
|
real (kind=dp) :: fxradial, fyradial, fzradial |
186 |
|
|
real (kind=dp) :: rijtest, rjitest |
187 |
|
|
real (kind=dp) :: radcomxi, radcomyi, radcomzi |
188 |
|
|
real (kind=dp) :: radcomxj, radcomyj, radcomzj |
189 |
|
|
integer :: id1, id2 |
190 |
gezelter |
246 |
integer :: me1, me2 |
191 |
gezelter |
507 |
real (kind=dp) :: w0, v0, v0p, rl, ru, rlp, rup, rbig |
192 |
gezelter |
115 |
|
193 |
gezelter |
507 |
if (.not.allocated(StickyMap)) then |
194 |
gezelter |
246 |
call handleError("sticky", "no StickyMap was present before first call of do_sticky_pair!") |
195 |
gezelter |
115 |
return |
196 |
gezelter |
246 |
end if |
197 |
gezelter |
507 |
|
198 |
gezelter |
246 |
#ifdef IS_MPI |
199 |
|
|
me1 = atid_Row(atom1) |
200 |
|
|
me2 = atid_Col(atom2) |
201 |
|
|
#else |
202 |
|
|
me1 = atid(atom1) |
203 |
|
|
me2 = atid(atom2) |
204 |
|
|
#endif |
205 |
|
|
|
206 |
|
|
if (me1.eq.me2) then |
207 |
|
|
w0 = StickyMap(me1)%w0 |
208 |
|
|
v0 = StickyMap(me1)%v0 |
209 |
|
|
v0p = StickyMap(me1)%v0p |
210 |
|
|
rl = StickyMap(me1)%rl |
211 |
|
|
ru = StickyMap(me1)%ru |
212 |
|
|
rlp = StickyMap(me1)%rlp |
213 |
|
|
rup = StickyMap(me1)%rup |
214 |
|
|
rbig = StickyMap(me1)%rbig |
215 |
|
|
else |
216 |
|
|
! This is silly, but if you want 2 sticky types in your |
217 |
|
|
! simulation, we'll let you do it with the Lorentz- |
218 |
|
|
! Berthelot mixing rules. |
219 |
|
|
! (Warning: you'll be SLLLLLLLLLLLLLLLOOOOOOOOOOWWWWWWWWWWW) |
220 |
|
|
rl = 0.5_dp * ( StickyMap(me1)%rl + StickyMap(me2)%rl ) |
221 |
|
|
ru = 0.5_dp * ( StickyMap(me1)%ru + StickyMap(me2)%ru ) |
222 |
|
|
rlp = 0.5_dp * ( StickyMap(me1)%rlp + StickyMap(me2)%rlp ) |
223 |
|
|
rup = 0.5_dp * ( StickyMap(me1)%rup + StickyMap(me2)%rup ) |
224 |
|
|
rbig = max(ru, rup) |
225 |
|
|
w0 = sqrt( StickyMap(me1)%w0 * StickyMap(me2)%w0 ) |
226 |
|
|
v0 = sqrt( StickyMap(me1)%v0 * StickyMap(me2)%v0 ) |
227 |
|
|
v0p = sqrt( StickyMap(me1)%v0p * StickyMap(me2)%v0p ) |
228 |
gezelter |
115 |
endif |
229 |
|
|
|
230 |
gezelter |
246 |
if ( rij .LE. rbig ) then |
231 |
gezelter |
115 |
|
232 |
|
|
r3 = r2*rij |
233 |
|
|
r5 = r3*r2 |
234 |
|
|
|
235 |
|
|
drdx = d(1) / rij |
236 |
|
|
drdy = d(2) / rij |
237 |
|
|
drdz = d(3) / rij |
238 |
|
|
|
239 |
|
|
#ifdef IS_MPI |
240 |
|
|
! rotate the inter-particle separation into the two different |
241 |
|
|
! body-fixed coordinate systems: |
242 |
|
|
|
243 |
|
|
xi = A_row(1,atom1)*d(1) + A_row(2,atom1)*d(2) + A_row(3,atom1)*d(3) |
244 |
|
|
yi = A_row(4,atom1)*d(1) + A_row(5,atom1)*d(2) + A_row(6,atom1)*d(3) |
245 |
|
|
zi = A_row(7,atom1)*d(1) + A_row(8,atom1)*d(2) + A_row(9,atom1)*d(3) |
246 |
|
|
|
247 |
|
|
! negative sign because this is the vector from j to i: |
248 |
|
|
|
249 |
|
|
xj = -(A_Col(1,atom2)*d(1) + A_Col(2,atom2)*d(2) + A_Col(3,atom2)*d(3)) |
250 |
|
|
yj = -(A_Col(4,atom2)*d(1) + A_Col(5,atom2)*d(2) + A_Col(6,atom2)*d(3)) |
251 |
|
|
zj = -(A_Col(7,atom2)*d(1) + A_Col(8,atom2)*d(2) + A_Col(9,atom2)*d(3)) |
252 |
|
|
#else |
253 |
|
|
! rotate the inter-particle separation into the two different |
254 |
|
|
! body-fixed coordinate systems: |
255 |
|
|
|
256 |
|
|
xi = a(1,atom1)*d(1) + a(2,atom1)*d(2) + a(3,atom1)*d(3) |
257 |
|
|
yi = a(4,atom1)*d(1) + a(5,atom1)*d(2) + a(6,atom1)*d(3) |
258 |
|
|
zi = a(7,atom1)*d(1) + a(8,atom1)*d(2) + a(9,atom1)*d(3) |
259 |
|
|
|
260 |
|
|
! negative sign because this is the vector from j to i: |
261 |
|
|
|
262 |
|
|
xj = -(a(1,atom2)*d(1) + a(2,atom2)*d(2) + a(3,atom2)*d(3)) |
263 |
|
|
yj = -(a(4,atom2)*d(1) + a(5,atom2)*d(2) + a(6,atom2)*d(3)) |
264 |
|
|
zj = -(a(7,atom2)*d(1) + a(8,atom2)*d(2) + a(9,atom2)*d(3)) |
265 |
|
|
#endif |
266 |
|
|
|
267 |
|
|
xi2 = xi*xi |
268 |
|
|
yi2 = yi*yi |
269 |
|
|
zi2 = zi*zi |
270 |
|
|
|
271 |
|
|
xj2 = xj*xj |
272 |
|
|
yj2 = yj*yj |
273 |
|
|
zj2 = zj*zj |
274 |
|
|
|
275 |
gezelter |
246 |
call calc_sw_fnc(rij, rl, ru, rlp, rup, s, sp, dsdr, dspdr) |
276 |
gezelter |
115 |
|
277 |
|
|
wi = 2.0d0*(xi2-yi2)*zi / r3 |
278 |
|
|
wj = 2.0d0*(xj2-yj2)*zj / r3 |
279 |
|
|
w = wi+wj |
280 |
|
|
|
281 |
|
|
zif = zi/rij - 0.6d0 |
282 |
|
|
zis = zi/rij + 0.8d0 |
283 |
|
|
|
284 |
|
|
zjf = zj/rij - 0.6d0 |
285 |
|
|
zjs = zj/rij + 0.8d0 |
286 |
|
|
|
287 |
gezelter |
246 |
wip = zif*zif*zis*zis - w0 |
288 |
|
|
wjp = zjf*zjf*zjs*zjs - w0 |
289 |
gezelter |
115 |
wp = wip + wjp |
290 |
|
|
|
291 |
gezelter |
246 |
vpair = vpair + 0.5d0*(v0*s*w + v0p*sp*wp) |
292 |
gezelter |
115 |
if (do_pot) then |
293 |
|
|
#ifdef IS_MPI |
294 |
gezelter |
246 |
pot_row(atom1) = pot_row(atom1) + 0.25d0*(v0*s*w + v0p*sp*wp)*sw |
295 |
|
|
pot_col(atom2) = pot_col(atom2) + 0.25d0*(v0*s*w + v0p*sp*wp)*sw |
296 |
gezelter |
115 |
#else |
297 |
gezelter |
246 |
pot = pot + 0.5d0*(v0*s*w + v0p*sp*wp)*sw |
298 |
gezelter |
115 |
#endif |
299 |
|
|
endif |
300 |
|
|
|
301 |
|
|
dwidx = 4.0d0*xi*zi/r3 - 6.0d0*xi*zi*(xi2-yi2)/r5 |
302 |
|
|
dwidy = - 4.0d0*yi*zi/r3 - 6.0d0*yi*zi*(xi2-yi2)/r5 |
303 |
|
|
dwidz = 2.0d0*(xi2-yi2)/r3 - 6.0d0*zi2*(xi2-yi2)/r5 |
304 |
|
|
|
305 |
|
|
dwjdx = 4.0d0*xj*zj/r3 - 6.0d0*xj*zj*(xj2-yj2)/r5 |
306 |
|
|
dwjdy = - 4.0d0*yj*zj/r3 - 6.0d0*yj*zj*(xj2-yj2)/r5 |
307 |
|
|
dwjdz = 2.0d0*(xj2-yj2)/r3 - 6.0d0*zj2*(xj2-yj2)/r5 |
308 |
|
|
|
309 |
|
|
uglyi = zif*zif*zis + zif*zis*zis |
310 |
|
|
uglyj = zjf*zjf*zjs + zjf*zjs*zjs |
311 |
|
|
|
312 |
|
|
dwipdx = -2.0d0*xi*zi*uglyi/r3 |
313 |
|
|
dwipdy = -2.0d0*yi*zi*uglyi/r3 |
314 |
|
|
dwipdz = 2.0d0*(1.0d0/rij - zi2/r3)*uglyi |
315 |
|
|
|
316 |
|
|
dwjpdx = -2.0d0*xj*zj*uglyj/r3 |
317 |
|
|
dwjpdy = -2.0d0*yj*zj*uglyj/r3 |
318 |
|
|
dwjpdz = 2.0d0*(1.0d0/rij - zj2/r3)*uglyj |
319 |
|
|
|
320 |
|
|
dwidux = 4.0d0*(yi*zi2 + 0.5d0*yi*(xi2-yi2))/r3 |
321 |
|
|
dwiduy = 4.0d0*(xi*zi2 - 0.5d0*xi*(xi2-yi2))/r3 |
322 |
|
|
dwiduz = - 8.0d0*xi*yi*zi/r3 |
323 |
|
|
|
324 |
|
|
dwjdux = 4.0d0*(yj*zj2 + 0.5d0*yj*(xj2-yj2))/r3 |
325 |
|
|
dwjduy = 4.0d0*(xj*zj2 - 0.5d0*xj*(xj2-yj2))/r3 |
326 |
|
|
dwjduz = - 8.0d0*xj*yj*zj/r3 |
327 |
|
|
|
328 |
|
|
dwipdux = 2.0d0*yi*uglyi/rij |
329 |
|
|
dwipduy = -2.0d0*xi*uglyi/rij |
330 |
|
|
dwipduz = 0.0d0 |
331 |
|
|
|
332 |
|
|
dwjpdux = 2.0d0*yj*uglyj/rij |
333 |
|
|
dwjpduy = -2.0d0*xj*uglyj/rij |
334 |
|
|
dwjpduz = 0.0d0 |
335 |
|
|
|
336 |
|
|
! do the torques first since they are easy: |
337 |
|
|
! remember that these are still in the body fixed axes |
338 |
|
|
|
339 |
gezelter |
246 |
txi = 0.5d0*(v0*s*dwidux + v0p*sp*dwipdux)*sw |
340 |
|
|
tyi = 0.5d0*(v0*s*dwiduy + v0p*sp*dwipduy)*sw |
341 |
|
|
tzi = 0.5d0*(v0*s*dwiduz + v0p*sp*dwipduz)*sw |
342 |
gezelter |
115 |
|
343 |
gezelter |
246 |
txj = 0.5d0*(v0*s*dwjdux + v0p*sp*dwjpdux)*sw |
344 |
|
|
tyj = 0.5d0*(v0*s*dwjduy + v0p*sp*dwjpduy)*sw |
345 |
|
|
tzj = 0.5d0*(v0*s*dwjduz + v0p*sp*dwjpduz)*sw |
346 |
gezelter |
115 |
|
347 |
|
|
! go back to lab frame using transpose of rotation matrix: |
348 |
|
|
|
349 |
|
|
#ifdef IS_MPI |
350 |
|
|
t_Row(1,atom1) = t_Row(1,atom1) + a_Row(1,atom1)*txi + & |
351 |
|
|
a_Row(4,atom1)*tyi + a_Row(7,atom1)*tzi |
352 |
|
|
t_Row(2,atom1) = t_Row(2,atom1) + a_Row(2,atom1)*txi + & |
353 |
|
|
a_Row(5,atom1)*tyi + a_Row(8,atom1)*tzi |
354 |
|
|
t_Row(3,atom1) = t_Row(3,atom1) + a_Row(3,atom1)*txi + & |
355 |
|
|
a_Row(6,atom1)*tyi + a_Row(9,atom1)*tzi |
356 |
|
|
|
357 |
|
|
t_Col(1,atom2) = t_Col(1,atom2) + a_Col(1,atom2)*txj + & |
358 |
|
|
a_Col(4,atom2)*tyj + a_Col(7,atom2)*tzj |
359 |
|
|
t_Col(2,atom2) = t_Col(2,atom2) + a_Col(2,atom2)*txj + & |
360 |
|
|
a_Col(5,atom2)*tyj + a_Col(8,atom2)*tzj |
361 |
|
|
t_Col(3,atom2) = t_Col(3,atom2) + a_Col(3,atom2)*txj + & |
362 |
|
|
a_Col(6,atom2)*tyj + a_Col(9,atom2)*tzj |
363 |
|
|
#else |
364 |
|
|
t(1,atom1) = t(1,atom1) + a(1,atom1)*txi + a(4,atom1)*tyi + a(7,atom1)*tzi |
365 |
|
|
t(2,atom1) = t(2,atom1) + a(2,atom1)*txi + a(5,atom1)*tyi + a(8,atom1)*tzi |
366 |
|
|
t(3,atom1) = t(3,atom1) + a(3,atom1)*txi + a(6,atom1)*tyi + a(9,atom1)*tzi |
367 |
|
|
|
368 |
|
|
t(1,atom2) = t(1,atom2) + a(1,atom2)*txj + a(4,atom2)*tyj + a(7,atom2)*tzj |
369 |
|
|
t(2,atom2) = t(2,atom2) + a(2,atom2)*txj + a(5,atom2)*tyj + a(8,atom2)*tzj |
370 |
|
|
t(3,atom2) = t(3,atom2) + a(3,atom2)*txj + a(6,atom2)*tyj + a(9,atom2)*tzj |
371 |
|
|
#endif |
372 |
|
|
! Now, on to the forces: |
373 |
|
|
|
374 |
|
|
! first rotate the i terms back into the lab frame: |
375 |
|
|
|
376 |
gezelter |
246 |
radcomxi = (v0*s*dwidx+v0p*sp*dwipdx)*sw |
377 |
|
|
radcomyi = (v0*s*dwidy+v0p*sp*dwipdy)*sw |
378 |
|
|
radcomzi = (v0*s*dwidz+v0p*sp*dwipdz)*sw |
379 |
gezelter |
115 |
|
380 |
gezelter |
246 |
radcomxj = (v0*s*dwjdx+v0p*sp*dwjpdx)*sw |
381 |
|
|
radcomyj = (v0*s*dwjdy+v0p*sp*dwjpdy)*sw |
382 |
|
|
radcomzj = (v0*s*dwjdz+v0p*sp*dwjpdz)*sw |
383 |
gezelter |
115 |
|
384 |
|
|
#ifdef IS_MPI |
385 |
|
|
fxii = a_Row(1,atom1)*(radcomxi) + & |
386 |
|
|
a_Row(4,atom1)*(radcomyi) + & |
387 |
|
|
a_Row(7,atom1)*(radcomzi) |
388 |
|
|
fyii = a_Row(2,atom1)*(radcomxi) + & |
389 |
|
|
a_Row(5,atom1)*(radcomyi) + & |
390 |
|
|
a_Row(8,atom1)*(radcomzi) |
391 |
|
|
fzii = a_Row(3,atom1)*(radcomxi) + & |
392 |
|
|
a_Row(6,atom1)*(radcomyi) + & |
393 |
|
|
a_Row(9,atom1)*(radcomzi) |
394 |
|
|
|
395 |
|
|
fxjj = a_Col(1,atom2)*(radcomxj) + & |
396 |
|
|
a_Col(4,atom2)*(radcomyj) + & |
397 |
|
|
a_Col(7,atom2)*(radcomzj) |
398 |
|
|
fyjj = a_Col(2,atom2)*(radcomxj) + & |
399 |
|
|
a_Col(5,atom2)*(radcomyj) + & |
400 |
|
|
a_Col(8,atom2)*(radcomzj) |
401 |
|
|
fzjj = a_Col(3,atom2)*(radcomxj)+ & |
402 |
|
|
a_Col(6,atom2)*(radcomyj) + & |
403 |
|
|
a_Col(9,atom2)*(radcomzj) |
404 |
|
|
#else |
405 |
|
|
fxii = a(1,atom1)*(radcomxi) + & |
406 |
|
|
a(4,atom1)*(radcomyi) + & |
407 |
|
|
a(7,atom1)*(radcomzi) |
408 |
|
|
fyii = a(2,atom1)*(radcomxi) + & |
409 |
|
|
a(5,atom1)*(radcomyi) + & |
410 |
|
|
a(8,atom1)*(radcomzi) |
411 |
|
|
fzii = a(3,atom1)*(radcomxi) + & |
412 |
|
|
a(6,atom1)*(radcomyi) + & |
413 |
|
|
a(9,atom1)*(radcomzi) |
414 |
|
|
|
415 |
|
|
fxjj = a(1,atom2)*(radcomxj) + & |
416 |
|
|
a(4,atom2)*(radcomyj) + & |
417 |
|
|
a(7,atom2)*(radcomzj) |
418 |
|
|
fyjj = a(2,atom2)*(radcomxj) + & |
419 |
|
|
a(5,atom2)*(radcomyj) + & |
420 |
|
|
a(8,atom2)*(radcomzj) |
421 |
|
|
fzjj = a(3,atom2)*(radcomxj)+ & |
422 |
|
|
a(6,atom2)*(radcomyj) + & |
423 |
|
|
a(9,atom2)*(radcomzj) |
424 |
|
|
#endif |
425 |
|
|
|
426 |
|
|
fxij = -fxii |
427 |
|
|
fyij = -fyii |
428 |
|
|
fzij = -fzii |
429 |
|
|
|
430 |
|
|
fxji = -fxjj |
431 |
|
|
fyji = -fyjj |
432 |
|
|
fzji = -fzjj |
433 |
|
|
|
434 |
|
|
! now assemble these with the radial-only terms: |
435 |
|
|
|
436 |
gezelter |
246 |
fxradial = 0.5d0*(v0*dsdr*drdx*w + v0p*dspdr*drdx*wp + fxii + fxji) |
437 |
|
|
fyradial = 0.5d0*(v0*dsdr*drdy*w + v0p*dspdr*drdy*wp + fyii + fyji) |
438 |
|
|
fzradial = 0.5d0*(v0*dsdr*drdz*w + v0p*dspdr*drdz*wp + fzii + fzji) |
439 |
gezelter |
115 |
|
440 |
|
|
#ifdef IS_MPI |
441 |
|
|
f_Row(1,atom1) = f_Row(1,atom1) + fxradial |
442 |
|
|
f_Row(2,atom1) = f_Row(2,atom1) + fyradial |
443 |
|
|
f_Row(3,atom1) = f_Row(3,atom1) + fzradial |
444 |
|
|
|
445 |
|
|
f_Col(1,atom2) = f_Col(1,atom2) - fxradial |
446 |
|
|
f_Col(2,atom2) = f_Col(2,atom2) - fyradial |
447 |
|
|
f_Col(3,atom2) = f_Col(3,atom2) - fzradial |
448 |
|
|
#else |
449 |
|
|
f(1,atom1) = f(1,atom1) + fxradial |
450 |
|
|
f(2,atom1) = f(2,atom1) + fyradial |
451 |
|
|
f(3,atom1) = f(3,atom1) + fzradial |
452 |
|
|
|
453 |
|
|
f(1,atom2) = f(1,atom2) - fxradial |
454 |
|
|
f(2,atom2) = f(2,atom2) - fyradial |
455 |
|
|
f(3,atom2) = f(3,atom2) - fzradial |
456 |
|
|
#endif |
457 |
|
|
|
458 |
|
|
#ifdef IS_MPI |
459 |
|
|
id1 = AtomRowToGlobal(atom1) |
460 |
|
|
id2 = AtomColToGlobal(atom2) |
461 |
|
|
#else |
462 |
|
|
id1 = atom1 |
463 |
|
|
id2 = atom2 |
464 |
|
|
#endif |
465 |
gezelter |
507 |
|
466 |
gezelter |
115 |
if (molMembershipList(id1) .ne. molMembershipList(id2)) then |
467 |
gezelter |
507 |
|
468 |
gezelter |
115 |
fpair(1) = fpair(1) + fxradial |
469 |
|
|
fpair(2) = fpair(2) + fyradial |
470 |
|
|
fpair(3) = fpair(3) + fzradial |
471 |
gezelter |
507 |
|
472 |
gezelter |
115 |
endif |
473 |
|
|
endif |
474 |
|
|
end subroutine do_sticky_pair |
475 |
|
|
|
476 |
|
|
!! calculates the switching functions and their derivatives for a given |
477 |
gezelter |
246 |
subroutine calc_sw_fnc(r, rl, ru, rlp, rup, s, sp, dsdr, dspdr) |
478 |
gezelter |
507 |
|
479 |
gezelter |
246 |
real (kind=dp), intent(in) :: r, rl, ru, rlp, rup |
480 |
gezelter |
115 |
real (kind=dp), intent(inout) :: s, sp, dsdr, dspdr |
481 |
gezelter |
507 |
|
482 |
gezelter |
115 |
! distances must be in angstroms |
483 |
gezelter |
507 |
|
484 |
gezelter |
246 |
if (r.lt.rl) then |
485 |
gezelter |
115 |
s = 1.0d0 |
486 |
|
|
dsdr = 0.0d0 |
487 |
gezelter |
246 |
elseif (r.gt.ru) then |
488 |
gezelter |
115 |
s = 0.0d0 |
489 |
|
|
dsdr = 0.0d0 |
490 |
|
|
else |
491 |
gezelter |
246 |
s = ((ru + 2.0d0*r - 3.0d0*rl) * (ru-r)**2) / & |
492 |
|
|
((ru - rl)**3) |
493 |
|
|
dsdr = 6.0d0*(r-ru)*(r-rl)/((ru - rl)**3) |
494 |
gezelter |
115 |
endif |
495 |
|
|
|
496 |
gezelter |
246 |
if (r.lt.rlp) then |
497 |
gezelter |
115 |
sp = 1.0d0 |
498 |
|
|
dspdr = 0.0d0 |
499 |
gezelter |
246 |
elseif (r.gt.rup) then |
500 |
gezelter |
115 |
sp = 0.0d0 |
501 |
|
|
dspdr = 0.0d0 |
502 |
|
|
else |
503 |
gezelter |
246 |
sp = ((rup + 2.0d0*r - 3.0d0*rlp) * (rup-r)**2) / & |
504 |
|
|
((rup - rlp)**3) |
505 |
|
|
dspdr = 6.0d0*(r-rup)*(r-rlp)/((rup - rlp)**3) |
506 |
gezelter |
115 |
endif |
507 |
gezelter |
507 |
|
508 |
gezelter |
115 |
return |
509 |
|
|
end subroutine calc_sw_fnc |
510 |
chuckv |
492 |
|
511 |
|
|
subroutine destroyStickyTypes() |
512 |
|
|
if(allocated(StickyMap)) deallocate(StickyMap) |
513 |
|
|
end subroutine destroyStickyTypes |
514 |
chrisfen |
523 |
|
515 |
|
|
subroutine do_sticky_power_pair(atom1, atom2, d, rij, r2, sw, vpair, fpair, & |
516 |
chrisfen |
534 |
pot, A, f, t, do_pot, ebalance) |
517 |
chrisfen |
523 |
!! We assume that the rotation matrices have already been calculated |
518 |
|
|
!! and placed in the A array. |
519 |
|
|
|
520 |
|
|
!! i and j are pointers to the two SSD atoms |
521 |
|
|
|
522 |
|
|
integer, intent(in) :: atom1, atom2 |
523 |
|
|
real (kind=dp), intent(inout) :: rij, r2 |
524 |
|
|
real (kind=dp), dimension(3), intent(in) :: d |
525 |
|
|
real (kind=dp), dimension(3), intent(inout) :: fpair |
526 |
|
|
real (kind=dp) :: pot, vpair, sw |
527 |
|
|
real (kind=dp), dimension(9,nLocal) :: A |
528 |
|
|
real (kind=dp), dimension(3,nLocal) :: f |
529 |
|
|
real (kind=dp), dimension(3,nLocal) :: t |
530 |
chrisfen |
534 |
real (kind=dp), intent(in) :: ebalance |
531 |
chrisfen |
523 |
logical, intent(in) :: do_pot |
532 |
|
|
|
533 |
|
|
real (kind=dp) :: xi, yi, zi, xj, yj, zj, xi2, yi2, zi2, xj2, yj2, zj2 |
534 |
chrisfen |
527 |
real (kind=dp) :: xihat, yihat, zihat, xjhat, yjhat, zjhat |
535 |
|
|
real (kind=dp) :: rI, rI2, rI3, rI4, rI5, rI6, rI7, s, sp, dsdr, dspdr |
536 |
chrisfen |
534 |
real (kind=dp) :: wi, wj, w, wi2, wj2 |
537 |
chrisfen |
523 |
real (kind=dp) :: dwidx, dwidy, dwidz, dwjdx, dwjdy, dwjdz |
538 |
|
|
real (kind=dp) :: dwidux, dwiduy, dwiduz, dwjdux, dwjduy, dwjduz |
539 |
|
|
real (kind=dp) :: drdx, drdy, drdz |
540 |
|
|
real (kind=dp) :: txi, tyi, tzi, txj, tyj, tzj |
541 |
|
|
real (kind=dp) :: fxii, fyii, fzii, fxjj, fyjj, fzjj |
542 |
|
|
real (kind=dp) :: fxij, fyij, fzij, fxji, fyji, fzji |
543 |
|
|
real (kind=dp) :: fxradial, fyradial, fzradial |
544 |
|
|
real (kind=dp) :: rijtest, rjitest |
545 |
|
|
real (kind=dp) :: radcomxi, radcomyi, radcomzi |
546 |
|
|
real (kind=dp) :: radcomxj, radcomyj, radcomzj |
547 |
|
|
integer :: id1, id2 |
548 |
|
|
integer :: me1, me2 |
549 |
|
|
real (kind=dp) :: w0, v0, v0p, rl, ru, rlp, rup, rbig |
550 |
chrisfen |
527 |
real (kind=dp) :: zi3, zi4, zi5, zj3, zj4, zj5 |
551 |
chrisfen |
534 |
real (kind=dp) :: frac1, frac2 |
552 |
|
|
|
553 |
chrisfen |
523 |
if (.not.allocated(StickyMap)) then |
554 |
|
|
call handleError("sticky", "no StickyMap was present before first call of do_sticky_power_pair!") |
555 |
|
|
return |
556 |
|
|
end if |
557 |
|
|
|
558 |
|
|
#ifdef IS_MPI |
559 |
|
|
me1 = atid_Row(atom1) |
560 |
|
|
me2 = atid_Col(atom2) |
561 |
|
|
#else |
562 |
|
|
me1 = atid(atom1) |
563 |
|
|
me2 = atid(atom2) |
564 |
|
|
#endif |
565 |
|
|
|
566 |
|
|
if (me1.eq.me2) then |
567 |
|
|
w0 = StickyMap(me1)%w0 |
568 |
|
|
v0 = StickyMap(me1)%v0 |
569 |
|
|
v0p = StickyMap(me1)%v0p |
570 |
|
|
rl = StickyMap(me1)%rl |
571 |
|
|
ru = StickyMap(me1)%ru |
572 |
|
|
rlp = StickyMap(me1)%rlp |
573 |
|
|
rup = StickyMap(me1)%rup |
574 |
|
|
rbig = StickyMap(me1)%rbig |
575 |
|
|
else |
576 |
|
|
! This is silly, but if you want 2 sticky types in your |
577 |
|
|
! simulation, we'll let you do it with the Lorentz- |
578 |
|
|
! Berthelot mixing rules. |
579 |
|
|
! (Warning: you'll be SLLLLLLLLLLLLLLLOOOOOOOOOOWWWWWWWWWWW) |
580 |
|
|
rl = 0.5_dp * ( StickyMap(me1)%rl + StickyMap(me2)%rl ) |
581 |
|
|
ru = 0.5_dp * ( StickyMap(me1)%ru + StickyMap(me2)%ru ) |
582 |
|
|
rlp = 0.5_dp * ( StickyMap(me1)%rlp + StickyMap(me2)%rlp ) |
583 |
|
|
rup = 0.5_dp * ( StickyMap(me1)%rup + StickyMap(me2)%rup ) |
584 |
|
|
rbig = max(ru, rup) |
585 |
|
|
w0 = sqrt( StickyMap(me1)%w0 * StickyMap(me2)%w0 ) |
586 |
|
|
v0 = sqrt( StickyMap(me1)%v0 * StickyMap(me2)%v0 ) |
587 |
|
|
v0p = sqrt( StickyMap(me1)%v0p * StickyMap(me2)%v0p ) |
588 |
|
|
endif |
589 |
|
|
|
590 |
|
|
if ( rij .LE. rbig ) then |
591 |
|
|
|
592 |
chrisfen |
527 |
rI = 1.0d0/rij |
593 |
|
|
rI2 = rI*rI |
594 |
|
|
rI3 = rI2*rI |
595 |
|
|
rI4 = rI2*rI2 |
596 |
|
|
rI5 = rI3*rI2 |
597 |
|
|
rI6 = rI3*rI3 |
598 |
chrisfen |
532 |
rI7 = rI4*rI3 |
599 |
chrisfen |
527 |
|
600 |
|
|
drdx = d(1) * rI |
601 |
|
|
drdy = d(2) * rI |
602 |
|
|
drdz = d(3) * rI |
603 |
chrisfen |
523 |
|
604 |
|
|
#ifdef IS_MPI |
605 |
|
|
! rotate the inter-particle separation into the two different |
606 |
|
|
! body-fixed coordinate systems: |
607 |
|
|
|
608 |
|
|
xi = A_row(1,atom1)*d(1) + A_row(2,atom1)*d(2) + A_row(3,atom1)*d(3) |
609 |
|
|
yi = A_row(4,atom1)*d(1) + A_row(5,atom1)*d(2) + A_row(6,atom1)*d(3) |
610 |
|
|
zi = A_row(7,atom1)*d(1) + A_row(8,atom1)*d(2) + A_row(9,atom1)*d(3) |
611 |
|
|
|
612 |
|
|
! negative sign because this is the vector from j to i: |
613 |
|
|
|
614 |
|
|
xj = -(A_Col(1,atom2)*d(1) + A_Col(2,atom2)*d(2) + A_Col(3,atom2)*d(3)) |
615 |
|
|
yj = -(A_Col(4,atom2)*d(1) + A_Col(5,atom2)*d(2) + A_Col(6,atom2)*d(3)) |
616 |
|
|
zj = -(A_Col(7,atom2)*d(1) + A_Col(8,atom2)*d(2) + A_Col(9,atom2)*d(3)) |
617 |
|
|
#else |
618 |
|
|
! rotate the inter-particle separation into the two different |
619 |
|
|
! body-fixed coordinate systems: |
620 |
|
|
|
621 |
|
|
xi = a(1,atom1)*d(1) + a(2,atom1)*d(2) + a(3,atom1)*d(3) |
622 |
|
|
yi = a(4,atom1)*d(1) + a(5,atom1)*d(2) + a(6,atom1)*d(3) |
623 |
|
|
zi = a(7,atom1)*d(1) + a(8,atom1)*d(2) + a(9,atom1)*d(3) |
624 |
|
|
|
625 |
|
|
! negative sign because this is the vector from j to i: |
626 |
|
|
|
627 |
|
|
xj = -(a(1,atom2)*d(1) + a(2,atom2)*d(2) + a(3,atom2)*d(3)) |
628 |
|
|
yj = -(a(4,atom2)*d(1) + a(5,atom2)*d(2) + a(6,atom2)*d(3)) |
629 |
|
|
zj = -(a(7,atom2)*d(1) + a(8,atom2)*d(2) + a(9,atom2)*d(3)) |
630 |
|
|
#endif |
631 |
|
|
|
632 |
|
|
xi2 = xi*xi |
633 |
|
|
yi2 = yi*yi |
634 |
|
|
zi2 = zi*zi |
635 |
chrisfen |
527 |
zi3 = zi2*zi |
636 |
|
|
zi4 = zi2*zi2 |
637 |
chrisfen |
534 |
zi5 = zi3*zi2 |
638 |
chrisfen |
527 |
xihat = xi*rI |
639 |
|
|
yihat = yi*rI |
640 |
|
|
zihat = zi*rI |
641 |
|
|
|
642 |
chrisfen |
523 |
xj2 = xj*xj |
643 |
|
|
yj2 = yj*yj |
644 |
|
|
zj2 = zj*zj |
645 |
chrisfen |
527 |
zj3 = zj2*zj |
646 |
|
|
zj4 = zj2*zj2 |
647 |
chrisfen |
534 |
zj5 = zj3*zj2 |
648 |
chrisfen |
527 |
xjhat = xj*rI |
649 |
|
|
yjhat = yj*rI |
650 |
|
|
zjhat = zj*rI |
651 |
|
|
|
652 |
chrisfen |
523 |
call calc_sw_fnc(rij, rl, ru, rlp, rup, s, sp, dsdr, dspdr) |
653 |
chrisfen |
527 |
|
654 |
chrisfen |
534 |
frac1 = 0.6d0 |
655 |
|
|
frac2 = 0.0d0 |
656 |
chrisfen |
527 |
|
657 |
chrisfen |
532 |
wi = 2.0d0*(xi2-yi2)*zi*rI3 |
658 |
|
|
wj = 2.0d0*(xj2-yj2)*zj*rI3 |
659 |
|
|
|
660 |
chrisfen |
523 |
wi2 = wi*wi |
661 |
|
|
wj2 = wj*wj |
662 |
|
|
|
663 |
chrisfen |
534 |
w = frac1*wi*wi2 + frac2*wi + frac1*wj*wj2 + frac2*wj |
664 |
chrisfen |
523 |
|
665 |
chrisfen |
534 |
vpair = vpair + 0.5d0*(v0*s*w) + ebalance |
666 |
chrisfen |
527 |
|
667 |
chrisfen |
523 |
if (do_pot) then |
668 |
|
|
#ifdef IS_MPI |
669 |
chrisfen |
534 |
pot_row(atom1) = pot_row(atom1) + 0.25d0*(v0*s*w)*sw |
670 |
|
|
pot_col(atom2) = pot_col(atom2) + 0.25d0*(v0*s*w)*sw |
671 |
chrisfen |
523 |
#else |
672 |
chrisfen |
534 |
pot = pot + 0.5d0*(v0*s*w)*sw + ebalance |
673 |
chrisfen |
523 |
#endif |
674 |
|
|
endif |
675 |
|
|
|
676 |
chrisfen |
532 |
dwidx = ( 4.0d0*xi*zi*rI3 - 6.0d0*xi*zi*(xi2-yi2)*rI5 ) |
677 |
|
|
dwidy = ( -4.0d0*yi*zi*rI3 - 6.0d0*yi*zi*(xi2-yi2)*rI5 ) |
678 |
|
|
dwidz = ( 2.0d0*(xi2-yi2)*rI3 - 6.0d0*zi2*(xi2-yi2)*rI5 ) |
679 |
|
|
|
680 |
|
|
dwidx = frac1*3.0d0*wi2*dwidx + frac2*dwidx |
681 |
|
|
dwidy = frac1*3.0d0*wi2*dwidy + frac2*dwidy |
682 |
|
|
dwidz = frac1*3.0d0*wi2*dwidz + frac2*dwidz |
683 |
chrisfen |
523 |
|
684 |
chrisfen |
532 |
dwjdx = ( 4.0d0*xj*zj*rI3 - 6.0d0*xj*zj*(xj2-yj2)*rI5 ) |
685 |
|
|
dwjdy = ( -4.0d0*yj*zj*rI3 - 6.0d0*yj*zj*(xj2-yj2)*rI5 ) |
686 |
|
|
dwjdz = ( 2.0d0*(xj2-yj2)*rI3 - 6.0d0*zj2*(xj2-yj2)*rI5 ) |
687 |
chrisfen |
523 |
|
688 |
chrisfen |
532 |
dwjdx = frac1*3.0d0*wj2*dwjdx + frac2*dwjdx |
689 |
|
|
dwjdy = frac1*3.0d0*wj2*dwjdy + frac2*dwjdy |
690 |
|
|
dwjdz = frac1*3.0d0*wj2*dwjdz + frac2*dwjdz |
691 |
|
|
|
692 |
|
|
dwidux = ( 4.0d0*(yi*zi2 + 0.5d0*yi*(xi2-yi2))*rI3 ) |
693 |
|
|
dwiduy = ( 4.0d0*(xi*zi2 - 0.5d0*xi*(xi2-yi2))*rI3 ) |
694 |
|
|
dwiduz = ( -8.0d0*xi*yi*zi*rI3 ) |
695 |
chrisfen |
523 |
|
696 |
chrisfen |
532 |
dwidux = frac1*3.0d0*wi2*dwidux + frac2*dwidux |
697 |
|
|
dwiduy = frac1*3.0d0*wi2*dwiduy + frac2*dwiduy |
698 |
|
|
dwiduz = frac1*3.0d0*wi2*dwiduz + frac2*dwiduz |
699 |
chrisfen |
527 |
|
700 |
chrisfen |
532 |
dwjdux = ( 4.0d0*(yj*zj2 + 0.5d0*yj*(xj2-yj2))*rI3 ) |
701 |
|
|
dwjduy = ( 4.0d0*(xj*zj2 - 0.5d0*xj*(xj2-yj2))*rI3 ) |
702 |
|
|
dwjduz = ( -8.0d0*xj*yj*zj*rI3 ) |
703 |
|
|
|
704 |
|
|
dwjdux = frac1*3.0d0*wj2*dwjdux + frac2*dwjdux |
705 |
|
|
dwjduy = frac1*3.0d0*wj2*dwjduy + frac2*dwjduy |
706 |
|
|
dwjduz = frac1*3.0d0*wj2*dwjduz + frac2*dwjduz |
707 |
|
|
|
708 |
chrisfen |
523 |
! do the torques first since they are easy: |
709 |
|
|
! remember that these are still in the body fixed axes |
710 |
|
|
|
711 |
chrisfen |
534 |
txi = 0.5d0*(v0*s*dwidux)*sw |
712 |
|
|
tyi = 0.5d0*(v0*s*dwiduy)*sw |
713 |
|
|
tzi = 0.5d0*(v0*s*dwiduz)*sw |
714 |
chrisfen |
523 |
|
715 |
chrisfen |
534 |
txj = 0.5d0*(v0*s*dwjdux)*sw |
716 |
|
|
tyj = 0.5d0*(v0*s*dwjduy)*sw |
717 |
|
|
tzj = 0.5d0*(v0*s*dwjduz)*sw |
718 |
chrisfen |
523 |
|
719 |
|
|
! go back to lab frame using transpose of rotation matrix: |
720 |
|
|
|
721 |
|
|
#ifdef IS_MPI |
722 |
|
|
t_Row(1,atom1) = t_Row(1,atom1) + a_Row(1,atom1)*txi + & |
723 |
|
|
a_Row(4,atom1)*tyi + a_Row(7,atom1)*tzi |
724 |
|
|
t_Row(2,atom1) = t_Row(2,atom1) + a_Row(2,atom1)*txi + & |
725 |
|
|
a_Row(5,atom1)*tyi + a_Row(8,atom1)*tzi |
726 |
|
|
t_Row(3,atom1) = t_Row(3,atom1) + a_Row(3,atom1)*txi + & |
727 |
|
|
a_Row(6,atom1)*tyi + a_Row(9,atom1)*tzi |
728 |
|
|
|
729 |
|
|
t_Col(1,atom2) = t_Col(1,atom2) + a_Col(1,atom2)*txj + & |
730 |
|
|
a_Col(4,atom2)*tyj + a_Col(7,atom2)*tzj |
731 |
|
|
t_Col(2,atom2) = t_Col(2,atom2) + a_Col(2,atom2)*txj + & |
732 |
|
|
a_Col(5,atom2)*tyj + a_Col(8,atom2)*tzj |
733 |
|
|
t_Col(3,atom2) = t_Col(3,atom2) + a_Col(3,atom2)*txj + & |
734 |
|
|
a_Col(6,atom2)*tyj + a_Col(9,atom2)*tzj |
735 |
|
|
#else |
736 |
|
|
t(1,atom1) = t(1,atom1) + a(1,atom1)*txi + a(4,atom1)*tyi + a(7,atom1)*tzi |
737 |
|
|
t(2,atom1) = t(2,atom1) + a(2,atom1)*txi + a(5,atom1)*tyi + a(8,atom1)*tzi |
738 |
|
|
t(3,atom1) = t(3,atom1) + a(3,atom1)*txi + a(6,atom1)*tyi + a(9,atom1)*tzi |
739 |
|
|
|
740 |
|
|
t(1,atom2) = t(1,atom2) + a(1,atom2)*txj + a(4,atom2)*tyj + a(7,atom2)*tzj |
741 |
|
|
t(2,atom2) = t(2,atom2) + a(2,atom2)*txj + a(5,atom2)*tyj + a(8,atom2)*tzj |
742 |
|
|
t(3,atom2) = t(3,atom2) + a(3,atom2)*txj + a(6,atom2)*tyj + a(9,atom2)*tzj |
743 |
|
|
#endif |
744 |
|
|
! Now, on to the forces: |
745 |
|
|
|
746 |
|
|
! first rotate the i terms back into the lab frame: |
747 |
|
|
|
748 |
chrisfen |
534 |
radcomxi = (v0*s*dwidx)*sw |
749 |
|
|
radcomyi = (v0*s*dwidy)*sw |
750 |
|
|
radcomzi = (v0*s*dwidz)*sw |
751 |
chrisfen |
523 |
|
752 |
chrisfen |
534 |
radcomxj = (v0*s*dwjdx)*sw |
753 |
|
|
radcomyj = (v0*s*dwjdy)*sw |
754 |
|
|
radcomzj = (v0*s*dwjdz)*sw |
755 |
chrisfen |
523 |
|
756 |
|
|
#ifdef IS_MPI |
757 |
|
|
fxii = a_Row(1,atom1)*(radcomxi) + & |
758 |
|
|
a_Row(4,atom1)*(radcomyi) + & |
759 |
|
|
a_Row(7,atom1)*(radcomzi) |
760 |
|
|
fyii = a_Row(2,atom1)*(radcomxi) + & |
761 |
|
|
a_Row(5,atom1)*(radcomyi) + & |
762 |
|
|
a_Row(8,atom1)*(radcomzi) |
763 |
|
|
fzii = a_Row(3,atom1)*(radcomxi) + & |
764 |
|
|
a_Row(6,atom1)*(radcomyi) + & |
765 |
|
|
a_Row(9,atom1)*(radcomzi) |
766 |
|
|
|
767 |
|
|
fxjj = a_Col(1,atom2)*(radcomxj) + & |
768 |
|
|
a_Col(4,atom2)*(radcomyj) + & |
769 |
|
|
a_Col(7,atom2)*(radcomzj) |
770 |
|
|
fyjj = a_Col(2,atom2)*(radcomxj) + & |
771 |
|
|
a_Col(5,atom2)*(radcomyj) + & |
772 |
|
|
a_Col(8,atom2)*(radcomzj) |
773 |
|
|
fzjj = a_Col(3,atom2)*(radcomxj)+ & |
774 |
|
|
a_Col(6,atom2)*(radcomyj) + & |
775 |
|
|
a_Col(9,atom2)*(radcomzj) |
776 |
|
|
#else |
777 |
|
|
fxii = a(1,atom1)*(radcomxi) + & |
778 |
|
|
a(4,atom1)*(radcomyi) + & |
779 |
|
|
a(7,atom1)*(radcomzi) |
780 |
|
|
fyii = a(2,atom1)*(radcomxi) + & |
781 |
|
|
a(5,atom1)*(radcomyi) + & |
782 |
|
|
a(8,atom1)*(radcomzi) |
783 |
|
|
fzii = a(3,atom1)*(radcomxi) + & |
784 |
|
|
a(6,atom1)*(radcomyi) + & |
785 |
|
|
a(9,atom1)*(radcomzi) |
786 |
|
|
|
787 |
|
|
fxjj = a(1,atom2)*(radcomxj) + & |
788 |
|
|
a(4,atom2)*(radcomyj) + & |
789 |
|
|
a(7,atom2)*(radcomzj) |
790 |
|
|
fyjj = a(2,atom2)*(radcomxj) + & |
791 |
|
|
a(5,atom2)*(radcomyj) + & |
792 |
|
|
a(8,atom2)*(radcomzj) |
793 |
|
|
fzjj = a(3,atom2)*(radcomxj)+ & |
794 |
|
|
a(6,atom2)*(radcomyj) + & |
795 |
|
|
a(9,atom2)*(radcomzj) |
796 |
|
|
#endif |
797 |
|
|
|
798 |
|
|
fxij = -fxii |
799 |
|
|
fyij = -fyii |
800 |
|
|
fzij = -fzii |
801 |
|
|
|
802 |
|
|
fxji = -fxjj |
803 |
|
|
fyji = -fyjj |
804 |
|
|
fzji = -fzjj |
805 |
|
|
|
806 |
|
|
! now assemble these with the radial-only terms: |
807 |
|
|
|
808 |
chrisfen |
534 |
fxradial = 0.5d0*(v0*dsdr*w*drdx + fxii + fxji + ebalance*xihat) |
809 |
|
|
fyradial = 0.5d0*(v0*dsdr*w*drdy + fyii + fyji + ebalance*yihat) |
810 |
|
|
fzradial = 0.5d0*(v0*dsdr*w*drdz + fzii + fzji + ebalance*zihat) |
811 |
chrisfen |
523 |
|
812 |
|
|
#ifdef IS_MPI |
813 |
|
|
f_Row(1,atom1) = f_Row(1,atom1) + fxradial |
814 |
|
|
f_Row(2,atom1) = f_Row(2,atom1) + fyradial |
815 |
|
|
f_Row(3,atom1) = f_Row(3,atom1) + fzradial |
816 |
|
|
|
817 |
|
|
f_Col(1,atom2) = f_Col(1,atom2) - fxradial |
818 |
|
|
f_Col(2,atom2) = f_Col(2,atom2) - fyradial |
819 |
|
|
f_Col(3,atom2) = f_Col(3,atom2) - fzradial |
820 |
|
|
#else |
821 |
|
|
f(1,atom1) = f(1,atom1) + fxradial |
822 |
|
|
f(2,atom1) = f(2,atom1) + fyradial |
823 |
|
|
f(3,atom1) = f(3,atom1) + fzradial |
824 |
|
|
|
825 |
|
|
f(1,atom2) = f(1,atom2) - fxradial |
826 |
|
|
f(2,atom2) = f(2,atom2) - fyradial |
827 |
|
|
f(3,atom2) = f(3,atom2) - fzradial |
828 |
|
|
#endif |
829 |
|
|
|
830 |
|
|
#ifdef IS_MPI |
831 |
|
|
id1 = AtomRowToGlobal(atom1) |
832 |
|
|
id2 = AtomColToGlobal(atom2) |
833 |
|
|
#else |
834 |
|
|
id1 = atom1 |
835 |
|
|
id2 = atom2 |
836 |
|
|
#endif |
837 |
|
|
|
838 |
|
|
if (molMembershipList(id1) .ne. molMembershipList(id2)) then |
839 |
|
|
|
840 |
|
|
fpair(1) = fpair(1) + fxradial |
841 |
|
|
fpair(2) = fpair(2) + fyradial |
842 |
|
|
fpair(3) = fpair(3) + fzradial |
843 |
|
|
|
844 |
|
|
endif |
845 |
|
|
endif |
846 |
|
|
end subroutine do_sticky_power_pair |
847 |
|
|
|
848 |
gezelter |
246 |
end module sticky |