1 |
gezelter |
246 |
!! |
2 |
|
|
!! Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
|
!! |
4 |
|
|
!! The University of Notre Dame grants you ("Licensee") a |
5 |
|
|
!! non-exclusive, royalty free, license to use, modify and |
6 |
|
|
!! redistribute this software in source and binary code form, provided |
7 |
|
|
!! that the following conditions are met: |
8 |
|
|
!! |
9 |
|
|
!! 1. Acknowledgement of the program authors must be made in any |
10 |
|
|
!! publication of scientific results based in part on use of the |
11 |
|
|
!! program. An acceptable form of acknowledgement is citation of |
12 |
|
|
!! the article in which the program was described (Matthew |
13 |
|
|
!! A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
|
|
!! J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
|
|
!! Parallel Simulation Engine for Molecular Dynamics," |
16 |
|
|
!! J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
|
|
!! |
18 |
|
|
!! 2. Redistributions of source code must retain the above copyright |
19 |
|
|
!! notice, this list of conditions and the following disclaimer. |
20 |
|
|
!! |
21 |
|
|
!! 3. Redistributions in binary form must reproduce the above copyright |
22 |
|
|
!! notice, this list of conditions and the following disclaimer in the |
23 |
|
|
!! documentation and/or other materials provided with the |
24 |
|
|
!! distribution. |
25 |
|
|
!! |
26 |
|
|
!! This software is provided "AS IS," without a warranty of any |
27 |
|
|
!! kind. All express or implied conditions, representations and |
28 |
|
|
!! warranties, including any implied warranty of merchantability, |
29 |
|
|
!! fitness for a particular purpose or non-infringement, are hereby |
30 |
|
|
!! excluded. The University of Notre Dame and its licensors shall not |
31 |
|
|
!! be liable for any damages suffered by licensee as a result of |
32 |
|
|
!! using, modifying or distributing the software or its |
33 |
|
|
!! derivatives. In no event will the University of Notre Dame or its |
34 |
|
|
!! licensors be liable for any lost revenue, profit or data, or for |
35 |
|
|
!! direct, indirect, special, consequential, incidental or punitive |
36 |
|
|
!! damages, however caused and regardless of the theory of liability, |
37 |
|
|
!! arising out of the use of or inability to use software, even if the |
38 |
|
|
!! University of Notre Dame has been advised of the possibility of |
39 |
|
|
!! such damages. |
40 |
|
|
!! |
41 |
|
|
|
42 |
|
|
|
43 |
gezelter |
115 |
module shapes |
44 |
|
|
|
45 |
|
|
use force_globals |
46 |
|
|
use definitions |
47 |
|
|
use atype_module |
48 |
|
|
use vector_class |
49 |
|
|
use simulation |
50 |
|
|
use status |
51 |
gezelter |
140 |
use lj |
52 |
gezelter |
115 |
#ifdef IS_MPI |
53 |
|
|
use mpiSimulation |
54 |
|
|
#endif |
55 |
|
|
implicit none |
56 |
|
|
|
57 |
|
|
PRIVATE |
58 |
|
|
|
59 |
|
|
INTEGER, PARAMETER:: CHEBYSHEV_TN = 1 |
60 |
|
|
INTEGER, PARAMETER:: CHEBYSHEV_UN = 2 |
61 |
|
|
INTEGER, PARAMETER:: LAGUERRE = 3 |
62 |
|
|
INTEGER, PARAMETER:: HERMITE = 4 |
63 |
|
|
INTEGER, PARAMETER:: SH_COS = 0 |
64 |
|
|
INTEGER, PARAMETER:: SH_SIN = 1 |
65 |
|
|
|
66 |
|
|
logical, save :: haveShapeMap = .false. |
67 |
|
|
|
68 |
|
|
public :: do_shape_pair |
69 |
|
|
public :: newShapeType |
70 |
chrisfen |
154 |
public :: complete_Shape_FF |
71 |
chuckv |
491 |
public :: destroyShapeTypes |
72 |
gezelter |
115 |
|
73 |
|
|
type, private :: Shape |
74 |
|
|
integer :: atid |
75 |
|
|
integer :: nContactFuncs |
76 |
|
|
integer :: nRangeFuncs |
77 |
|
|
integer :: nStrengthFuncs |
78 |
|
|
integer :: bigL |
79 |
|
|
integer :: bigM |
80 |
|
|
integer, pointer, dimension(:) :: ContactFuncLValue => null() |
81 |
|
|
integer, pointer, dimension(:) :: ContactFuncMValue => null() |
82 |
|
|
integer, pointer, dimension(:) :: ContactFunctionType => null() |
83 |
|
|
real(kind=dp), pointer, dimension(:) :: ContactFuncCoefficient => null() |
84 |
|
|
integer, pointer, dimension(:) :: RangeFuncLValue => null() |
85 |
|
|
integer, pointer, dimension(:) :: RangeFuncMValue => null() |
86 |
|
|
integer, pointer, dimension(:) :: RangeFunctionType => null() |
87 |
|
|
real(kind=dp), pointer, dimension(:) :: RangeFuncCoefficient => null() |
88 |
|
|
integer, pointer, dimension(:) :: StrengthFuncLValue => null() |
89 |
|
|
integer, pointer, dimension(:) :: StrengthFuncMValue => null() |
90 |
|
|
integer, pointer, dimension(:) :: StrengthFunctionType => null() |
91 |
|
|
real(kind=dp), pointer, dimension(:) :: StrengthFuncCoefficient => null() |
92 |
|
|
logical :: isLJ |
93 |
|
|
real ( kind = dp ) :: epsilon |
94 |
|
|
real ( kind = dp ) :: sigma |
95 |
|
|
end type Shape |
96 |
|
|
|
97 |
|
|
type, private :: ShapeList |
98 |
|
|
integer :: n_shapes = 0 |
99 |
|
|
integer :: currentShape = 0 |
100 |
|
|
type (Shape), pointer :: Shapes(:) => null() |
101 |
|
|
integer, pointer :: atidToShape(:) => null() |
102 |
|
|
end type ShapeList |
103 |
|
|
|
104 |
|
|
type(ShapeList), save :: ShapeMap |
105 |
|
|
|
106 |
|
|
integer :: lmax |
107 |
|
|
|
108 |
|
|
contains |
109 |
|
|
|
110 |
|
|
subroutine newShapeType(nContactFuncs, ContactFuncLValue, & |
111 |
|
|
ContactFuncMValue, ContactFunctionType, ContactFuncCoefficient, & |
112 |
|
|
nRangeFuncs, RangeFuncLValue, RangeFuncMValue, RangeFunctionType, & |
113 |
|
|
RangeFuncCoefficient, nStrengthFuncs, StrengthFuncLValue, & |
114 |
|
|
StrengthFuncMValue, StrengthFunctionType, StrengthFuncCoefficient, & |
115 |
chrisfen |
195 |
myATID, status) |
116 |
gezelter |
115 |
|
117 |
|
|
integer :: nContactFuncs |
118 |
|
|
integer :: nRangeFuncs |
119 |
|
|
integer :: nStrengthFuncs |
120 |
|
|
integer :: shape_ident |
121 |
|
|
integer :: status |
122 |
chrisfen |
195 |
integer :: myATID |
123 |
gezelter |
115 |
integer :: bigL |
124 |
|
|
integer :: bigM |
125 |
|
|
integer :: j, me, nShapeTypes, nLJTypes, ntypes, current, alloc_stat |
126 |
|
|
integer, pointer :: MatchList(:) => null() |
127 |
|
|
|
128 |
|
|
integer, dimension(nContactFuncs) :: ContactFuncLValue |
129 |
|
|
integer, dimension(nContactFuncs) :: ContactFuncMValue |
130 |
|
|
integer, dimension(nContactFuncs) :: ContactFunctionType |
131 |
|
|
real(kind=dp), dimension(nContactFuncs) :: ContactFuncCoefficient |
132 |
|
|
integer, dimension(nRangeFuncs) :: RangeFuncLValue |
133 |
|
|
integer, dimension(nRangeFuncs) :: RangeFuncMValue |
134 |
|
|
integer, dimension(nRangeFuncs) :: RangeFunctionType |
135 |
|
|
real(kind=dp), dimension(nRangeFuncs) :: RangeFuncCoefficient |
136 |
|
|
integer, dimension(nStrengthFuncs) :: StrengthFuncLValue |
137 |
|
|
integer, dimension(nStrengthFuncs) :: StrengthFuncMValue |
138 |
|
|
integer, dimension(nStrengthFuncs) :: StrengthFunctionType |
139 |
|
|
real(kind=dp), dimension(nStrengthFuncs) :: StrengthFuncCoefficient |
140 |
|
|
|
141 |
|
|
status = 0 |
142 |
|
|
! check to see if this is the first time into this routine... |
143 |
|
|
if (.not.associated(ShapeMap%Shapes)) then |
144 |
|
|
|
145 |
|
|
call getMatchingElementList(atypes, "is_Shape", .true., & |
146 |
|
|
nShapeTypes, MatchList) |
147 |
|
|
|
148 |
gezelter |
140 |
call getMatchingElementList(atypes, "is_LennardJones", .true., & |
149 |
gezelter |
115 |
nLJTypes, MatchList) |
150 |
|
|
|
151 |
|
|
ShapeMap%n_shapes = nShapeTypes + nLJTypes |
152 |
|
|
|
153 |
|
|
allocate(ShapeMap%Shapes(nShapeTypes + nLJTypes)) |
154 |
|
|
|
155 |
|
|
ntypes = getSize(atypes) |
156 |
|
|
|
157 |
chrisfen |
195 |
allocate(ShapeMap%atidToShape(0:ntypes)) |
158 |
gezelter |
115 |
end if |
159 |
|
|
|
160 |
|
|
ShapeMap%currentShape = ShapeMap%currentShape + 1 |
161 |
|
|
current = ShapeMap%currentShape |
162 |
|
|
|
163 |
|
|
call allocateShape(nContactFuncs, nRangeFuncs, nStrengthFuncs, & |
164 |
|
|
ShapeMap%Shapes(current), stat=alloc_stat) |
165 |
|
|
if (alloc_stat .ne. 0) then |
166 |
|
|
status = -1 |
167 |
|
|
return |
168 |
|
|
endif |
169 |
|
|
|
170 |
chrisfen |
195 |
call getElementProperty(atypes, myATID, 'c_ident', me) |
171 |
|
|
|
172 |
gezelter |
115 |
ShapeMap%atidToShape(me) = current |
173 |
|
|
ShapeMap%Shapes(current)%atid = me |
174 |
|
|
ShapeMap%Shapes(current)%nContactFuncs = nContactFuncs |
175 |
|
|
ShapeMap%Shapes(current)%nRangeFuncs = nRangeFuncs |
176 |
|
|
ShapeMap%Shapes(current)%nStrengthFuncs = nStrengthFuncs |
177 |
|
|
ShapeMap%Shapes(current)%ContactFuncLValue = ContactFuncLValue |
178 |
|
|
ShapeMap%Shapes(current)%ContactFuncMValue = ContactFuncMValue |
179 |
|
|
ShapeMap%Shapes(current)%ContactFunctionType = ContactFunctionType |
180 |
|
|
ShapeMap%Shapes(current)%ContactFuncCoefficient = ContactFuncCoefficient |
181 |
|
|
ShapeMap%Shapes(current)%RangeFuncLValue = RangeFuncLValue |
182 |
|
|
ShapeMap%Shapes(current)%RangeFuncMValue = RangeFuncMValue |
183 |
|
|
ShapeMap%Shapes(current)%RangeFunctionType = RangeFunctionType |
184 |
|
|
ShapeMap%Shapes(current)%RangeFuncCoefficient = RangeFuncCoefficient |
185 |
|
|
ShapeMap%Shapes(current)%StrengthFuncLValue = StrengthFuncLValue |
186 |
|
|
ShapeMap%Shapes(current)%StrengthFuncMValue = StrengthFuncMValue |
187 |
|
|
ShapeMap%Shapes(current)%StrengthFunctionType = StrengthFunctionType |
188 |
|
|
ShapeMap%Shapes(current)%StrengthFuncCoefficient = StrengthFuncCoefficient |
189 |
|
|
|
190 |
|
|
bigL = -1 |
191 |
|
|
bigM = -1 |
192 |
|
|
|
193 |
|
|
do j = 1, ShapeMap%Shapes(current)%nContactFuncs |
194 |
|
|
if (ShapeMap%Shapes(current)%ContactFuncLValue(j) .gt. bigL) then |
195 |
|
|
bigL = ShapeMap%Shapes(current)%ContactFuncLValue(j) |
196 |
|
|
endif |
197 |
|
|
if (ShapeMap%Shapes(current)%ContactFuncMValue(j) .gt. bigM) then |
198 |
|
|
bigM = ShapeMap%Shapes(current)%ContactFuncMValue(j) |
199 |
|
|
endif |
200 |
|
|
enddo |
201 |
|
|
do j = 1, ShapeMap%Shapes(current)%nRangeFuncs |
202 |
|
|
if (ShapeMap%Shapes(current)%RangeFuncLValue(j) .gt. bigL) then |
203 |
|
|
bigL = ShapeMap%Shapes(current)%RangeFuncLValue(j) |
204 |
|
|
endif |
205 |
|
|
if (ShapeMap%Shapes(current)%RangeFuncMValue(j) .gt. bigM) then |
206 |
|
|
bigM = ShapeMap%Shapes(current)%RangeFuncMValue(j) |
207 |
|
|
endif |
208 |
|
|
enddo |
209 |
|
|
do j = 1, ShapeMap%Shapes(current)%nStrengthFuncs |
210 |
|
|
if (ShapeMap%Shapes(current)%StrengthFuncLValue(j) .gt. bigL) then |
211 |
|
|
bigL = ShapeMap%Shapes(current)%StrengthFuncLValue(j) |
212 |
|
|
endif |
213 |
|
|
if (ShapeMap%Shapes(current)%StrengthFuncMValue(j) .gt. bigM) then |
214 |
|
|
bigM = ShapeMap%Shapes(current)%StrengthFuncMValue(j) |
215 |
|
|
endif |
216 |
|
|
enddo |
217 |
|
|
|
218 |
|
|
ShapeMap%Shapes(current)%bigL = bigL |
219 |
|
|
ShapeMap%Shapes(current)%bigM = bigM |
220 |
|
|
|
221 |
|
|
end subroutine newShapeType |
222 |
|
|
|
223 |
|
|
subroutine allocateShape(nContactFuncs, nRangeFuncs, nStrengthFuncs, & |
224 |
|
|
myShape, stat) |
225 |
|
|
|
226 |
|
|
integer, intent(in) :: nContactFuncs, nRangeFuncs, nStrengthFuncs |
227 |
|
|
type(Shape), intent(inout) :: myShape |
228 |
|
|
integer, intent(out) :: stat |
229 |
|
|
integer :: alloc_stat |
230 |
|
|
|
231 |
chrisfen |
195 |
stat = 0 |
232 |
gezelter |
115 |
if (associated(myShape%contactFuncLValue)) then |
233 |
|
|
deallocate(myShape%contactFuncLValue) |
234 |
|
|
endif |
235 |
|
|
allocate(myShape%contactFuncLValue(nContactFuncs), stat = alloc_stat) |
236 |
|
|
if (alloc_stat .ne. 0) then |
237 |
|
|
stat = -1 |
238 |
|
|
return |
239 |
|
|
endif |
240 |
|
|
if (associated(myShape%contactFuncMValue)) then |
241 |
|
|
deallocate(myShape%contactFuncMValue) |
242 |
|
|
endif |
243 |
|
|
allocate(myShape%contactFuncMValue(nContactFuncs), stat = alloc_stat) |
244 |
|
|
if (alloc_stat .ne. 0) then |
245 |
|
|
stat = -1 |
246 |
|
|
return |
247 |
|
|
endif |
248 |
|
|
if (associated(myShape%contactFunctionType)) then |
249 |
|
|
deallocate(myShape%contactFunctionType) |
250 |
|
|
endif |
251 |
|
|
allocate(myShape%contactFunctionType(nContactFuncs), stat = alloc_stat) |
252 |
|
|
if (alloc_stat .ne. 0) then |
253 |
|
|
stat = -1 |
254 |
|
|
return |
255 |
|
|
endif |
256 |
|
|
if (associated(myShape%contactFuncCoefficient)) then |
257 |
|
|
deallocate(myShape%contactFuncCoefficient) |
258 |
|
|
endif |
259 |
|
|
allocate(myShape%contactFuncCoefficient(nContactFuncs), stat = alloc_stat) |
260 |
|
|
if (alloc_stat .ne. 0) then |
261 |
|
|
stat = -1 |
262 |
|
|
return |
263 |
|
|
endif |
264 |
|
|
|
265 |
|
|
if (associated(myShape%rangeFuncLValue)) then |
266 |
|
|
deallocate(myShape%rangeFuncLValue) |
267 |
|
|
endif |
268 |
|
|
allocate(myShape%rangeFuncLValue(nRangeFuncs), stat = alloc_stat) |
269 |
|
|
if (alloc_stat .ne. 0) then |
270 |
|
|
stat = -1 |
271 |
|
|
return |
272 |
|
|
endif |
273 |
|
|
if (associated(myShape%rangeFuncMValue)) then |
274 |
|
|
deallocate(myShape%rangeFuncMValue) |
275 |
|
|
endif |
276 |
|
|
allocate(myShape%rangeFuncMValue(nRangeFuncs), stat = alloc_stat) |
277 |
|
|
if (alloc_stat .ne. 0) then |
278 |
|
|
stat = -1 |
279 |
|
|
return |
280 |
|
|
endif |
281 |
|
|
if (associated(myShape%rangeFunctionType)) then |
282 |
|
|
deallocate(myShape%rangeFunctionType) |
283 |
|
|
endif |
284 |
|
|
allocate(myShape%rangeFunctionType(nRangeFuncs), stat = alloc_stat) |
285 |
|
|
if (alloc_stat .ne. 0) then |
286 |
|
|
stat = -1 |
287 |
|
|
return |
288 |
|
|
endif |
289 |
|
|
if (associated(myShape%rangeFuncCoefficient)) then |
290 |
|
|
deallocate(myShape%rangeFuncCoefficient) |
291 |
|
|
endif |
292 |
|
|
allocate(myShape%rangeFuncCoefficient(nRangeFuncs), stat = alloc_stat) |
293 |
|
|
if (alloc_stat .ne. 0) then |
294 |
|
|
stat = -1 |
295 |
|
|
return |
296 |
|
|
endif |
297 |
chrisfen |
195 |
|
298 |
gezelter |
115 |
if (associated(myShape%strengthFuncLValue)) then |
299 |
|
|
deallocate(myShape%strengthFuncLValue) |
300 |
|
|
endif |
301 |
|
|
allocate(myShape%strengthFuncLValue(nStrengthFuncs), stat = alloc_stat) |
302 |
|
|
if (alloc_stat .ne. 0) then |
303 |
|
|
stat = -1 |
304 |
|
|
return |
305 |
|
|
endif |
306 |
|
|
if (associated(myShape%strengthFuncMValue)) then |
307 |
|
|
deallocate(myShape%strengthFuncMValue) |
308 |
|
|
endif |
309 |
|
|
allocate(myShape%strengthFuncMValue(nStrengthFuncs), stat = alloc_stat) |
310 |
|
|
if (alloc_stat .ne. 0) then |
311 |
|
|
stat = -1 |
312 |
|
|
return |
313 |
|
|
endif |
314 |
|
|
if (associated(myShape%strengthFunctionType)) then |
315 |
|
|
deallocate(myShape%strengthFunctionType) |
316 |
|
|
endif |
317 |
|
|
allocate(myShape%strengthFunctionType(nStrengthFuncs), stat = alloc_stat) |
318 |
|
|
if (alloc_stat .ne. 0) then |
319 |
|
|
stat = -1 |
320 |
|
|
return |
321 |
|
|
endif |
322 |
|
|
if (associated(myShape%strengthFuncCoefficient)) then |
323 |
|
|
deallocate(myShape%strengthFuncCoefficient) |
324 |
|
|
endif |
325 |
|
|
allocate(myShape%strengthFuncCoefficient(nStrengthFuncs), stat=alloc_stat) |
326 |
|
|
if (alloc_stat .ne. 0) then |
327 |
|
|
stat = -1 |
328 |
|
|
return |
329 |
|
|
endif |
330 |
|
|
|
331 |
chrisfen |
195 |
return |
332 |
|
|
|
333 |
gezelter |
115 |
end subroutine allocateShape |
334 |
|
|
|
335 |
chrisfen |
154 |
subroutine complete_Shape_FF(status) |
336 |
gezelter |
115 |
integer :: status |
337 |
|
|
integer :: i, j, l, m, lm, function_type |
338 |
chrisfen |
154 |
real(kind=dp) :: thisDP, sigma |
339 |
gezelter |
115 |
integer :: alloc_stat, iTheta, iPhi, nSteps, nAtypes, thisIP, current |
340 |
|
|
logical :: thisProperty |
341 |
|
|
|
342 |
|
|
status = 0 |
343 |
|
|
if (ShapeMap%currentShape == 0) then |
344 |
|
|
call handleError("init_Shape_FF", "No members in ShapeMap") |
345 |
|
|
status = -1 |
346 |
|
|
return |
347 |
|
|
end if |
348 |
chrisfen |
154 |
|
349 |
gezelter |
115 |
nAtypes = getSize(atypes) |
350 |
|
|
|
351 |
|
|
if (nAtypes == 0) then |
352 |
|
|
status = -1 |
353 |
|
|
return |
354 |
|
|
end if |
355 |
|
|
|
356 |
chrisfen |
195 |
! atypes comes from c side |
357 |
|
|
do i = 0, nAtypes |
358 |
gezelter |
115 |
|
359 |
gezelter |
140 |
call getElementProperty(atypes, i, "is_LennardJones", thisProperty) |
360 |
gezelter |
115 |
|
361 |
|
|
if (thisProperty) then |
362 |
|
|
|
363 |
|
|
ShapeMap%currentShape = ShapeMap%currentShape + 1 |
364 |
|
|
current = ShapeMap%currentShape |
365 |
|
|
|
366 |
|
|
call getElementProperty(atypes, i, "c_ident", thisIP) |
367 |
|
|
ShapeMap%atidToShape(thisIP) = current |
368 |
|
|
ShapeMap%Shapes(current)%atid = thisIP |
369 |
|
|
|
370 |
|
|
ShapeMap%Shapes(current)%isLJ = .true. |
371 |
|
|
|
372 |
gezelter |
140 |
ShapeMap%Shapes(current)%epsilon = getEpsilon(thisIP) |
373 |
chrisfen |
154 |
ShapeMap%Shapes(current)%sigma = getSigma(thisIP) |
374 |
gezelter |
115 |
|
375 |
|
|
endif |
376 |
|
|
|
377 |
|
|
end do |
378 |
|
|
|
379 |
|
|
haveShapeMap = .true. |
380 |
|
|
|
381 |
chrisfen |
154 |
end subroutine complete_Shape_FF |
382 |
gezelter |
115 |
|
383 |
|
|
subroutine do_shape_pair(atom1, atom2, d, rij, r2, sw, vpair, fpair, & |
384 |
|
|
pot, A, f, t, do_pot) |
385 |
|
|
|
386 |
chrisfen |
195 |
INTEGER, PARAMETER:: LMAX = 64 |
387 |
|
|
INTEGER, PARAMETER:: MMAX = 64 |
388 |
|
|
|
389 |
gezelter |
115 |
integer, intent(in) :: atom1, atom2 |
390 |
|
|
real (kind=dp), intent(inout) :: rij, r2 |
391 |
|
|
real (kind=dp), dimension(3), intent(in) :: d |
392 |
|
|
real (kind=dp), dimension(3), intent(inout) :: fpair |
393 |
chrisfen |
210 |
real (kind=dp) :: pot, vpair, sw, dswdr |
394 |
gezelter |
115 |
real (kind=dp), dimension(9,nLocal) :: A |
395 |
|
|
real (kind=dp), dimension(3,nLocal) :: f |
396 |
|
|
real (kind=dp), dimension(3,nLocal) :: t |
397 |
|
|
logical, intent(in) :: do_pot |
398 |
|
|
|
399 |
|
|
real (kind=dp) :: r3, r5, rt2, rt3, rt5, rt6, rt11, rt12, rt126 |
400 |
|
|
integer :: atid1, atid2, st1, st2 |
401 |
|
|
integer :: l, m, lm, id1, id2, localError, function_type |
402 |
|
|
real (kind=dp) :: sigma_i, s_i, eps_i, sigma_j, s_j, eps_j |
403 |
|
|
real (kind=dp) :: coeff |
404 |
chrisfen |
210 |
real (kind=dp) :: pot_temp |
405 |
gezelter |
115 |
|
406 |
|
|
real (kind=dp) :: dsigmaidx, dsigmaidy, dsigmaidz |
407 |
|
|
real (kind=dp) :: dsigmaidux, dsigmaiduy, dsigmaiduz |
408 |
|
|
real (kind=dp) :: dsigmajdx, dsigmajdy, dsigmajdz |
409 |
|
|
real (kind=dp) :: dsigmajdux, dsigmajduy, dsigmajduz |
410 |
|
|
|
411 |
|
|
real (kind=dp) :: dsidx, dsidy, dsidz |
412 |
|
|
real (kind=dp) :: dsidux, dsiduy, dsiduz |
413 |
|
|
real (kind=dp) :: dsjdx, dsjdy, dsjdz |
414 |
|
|
real (kind=dp) :: dsjdux, dsjduy, dsjduz |
415 |
|
|
|
416 |
|
|
real (kind=dp) :: depsidx, depsidy, depsidz |
417 |
|
|
real (kind=dp) :: depsidux, depsiduy, depsiduz |
418 |
|
|
real (kind=dp) :: depsjdx, depsjdy, depsjdz |
419 |
|
|
real (kind=dp) :: depsjdux, depsjduy, depsjduz |
420 |
|
|
|
421 |
|
|
real (kind=dp) :: xi, yi, zi, xj, yj, zj, xi2, yi2, zi2, xj2, yj2, zj2 |
422 |
|
|
|
423 |
gezelter |
203 |
real (kind=dp) :: sti2, stj2 |
424 |
|
|
|
425 |
gezelter |
115 |
real (kind=dp) :: proji, proji3, projj, projj3 |
426 |
|
|
real (kind=dp) :: cti, ctj, cpi, cpj, spi, spj |
427 |
|
|
real (kind=dp) :: Phunc, sigma, s, eps, rtdenom, rt |
428 |
|
|
|
429 |
|
|
real (kind=dp) :: dctidx, dctidy, dctidz |
430 |
|
|
real (kind=dp) :: dctidux, dctiduy, dctiduz |
431 |
|
|
real (kind=dp) :: dctjdx, dctjdy, dctjdz |
432 |
|
|
real (kind=dp) :: dctjdux, dctjduy, dctjduz |
433 |
|
|
|
434 |
|
|
real (kind=dp) :: dcpidx, dcpidy, dcpidz |
435 |
|
|
real (kind=dp) :: dcpidux, dcpiduy, dcpiduz |
436 |
|
|
real (kind=dp) :: dcpjdx, dcpjdy, dcpjdz |
437 |
|
|
real (kind=dp) :: dcpjdux, dcpjduy, dcpjduz |
438 |
|
|
|
439 |
|
|
real (kind=dp) :: dspidx, dspidy, dspidz |
440 |
|
|
real (kind=dp) :: dspidux, dspiduy, dspiduz |
441 |
|
|
real (kind=dp) :: dspjdx, dspjdy, dspjdz |
442 |
|
|
real (kind=dp) :: dspjdux, dspjduy, dspjduz |
443 |
|
|
|
444 |
|
|
real (kind=dp) :: dPhuncdX, dPhuncdY, dPhuncdZ |
445 |
|
|
real (kind=dp) :: dPhuncdUx, dPhuncdUy, dPhuncdUz |
446 |
|
|
|
447 |
|
|
real (kind=dp) :: dsigmadxi, dsigmadyi, dsigmadzi |
448 |
|
|
real (kind=dp) :: dsigmaduxi, dsigmaduyi, dsigmaduzi |
449 |
|
|
real (kind=dp) :: dsigmadxj, dsigmadyj, dsigmadzj |
450 |
|
|
real (kind=dp) :: dsigmaduxj, dsigmaduyj, dsigmaduzj |
451 |
|
|
|
452 |
|
|
real (kind=dp) :: dsdxi, dsdyi, dsdzi |
453 |
|
|
real (kind=dp) :: dsduxi, dsduyi, dsduzi |
454 |
|
|
real (kind=dp) :: dsdxj, dsdyj, dsdzj |
455 |
|
|
real (kind=dp) :: dsduxj, dsduyj, dsduzj |
456 |
|
|
|
457 |
|
|
real (kind=dp) :: depsdxi, depsdyi, depsdzi |
458 |
|
|
real (kind=dp) :: depsduxi, depsduyi, depsduzi |
459 |
|
|
real (kind=dp) :: depsdxj, depsdyj, depsdzj |
460 |
|
|
real (kind=dp) :: depsduxj, depsduyj, depsduzj |
461 |
|
|
|
462 |
|
|
real (kind=dp) :: drtdxi, drtdyi, drtdzi |
463 |
|
|
real (kind=dp) :: drtduxi, drtduyi, drtduzi |
464 |
|
|
real (kind=dp) :: drtdxj, drtdyj, drtdzj |
465 |
|
|
real (kind=dp) :: drtduxj, drtduyj, drtduzj |
466 |
|
|
|
467 |
|
|
real (kind=dp) :: drdxi, drdyi, drdzi |
468 |
|
|
real (kind=dp) :: drduxi, drduyi, drduzi |
469 |
|
|
real (kind=dp) :: drdxj, drdyj, drdzj |
470 |
|
|
real (kind=dp) :: drduxj, drduyj, drduzj |
471 |
|
|
|
472 |
|
|
real (kind=dp) :: dvdxi, dvdyi, dvdzi |
473 |
|
|
real (kind=dp) :: dvduxi, dvduyi, dvduzi |
474 |
|
|
real (kind=dp) :: dvdxj, dvdyj, dvdzj |
475 |
|
|
real (kind=dp) :: dvduxj, dvduyj, dvduzj |
476 |
|
|
|
477 |
|
|
real (kind=dp) :: fxi, fyi, fzi, fxj, fyj, fzj |
478 |
|
|
real (kind=dp) :: txi, tyi, tzi, txj, tyj, tzj |
479 |
|
|
real (kind=dp) :: fxii, fyii, fzii, fxij, fyij, fzij |
480 |
|
|
real (kind=dp) :: fxji, fyji, fzji, fxjj, fyjj, fzjj |
481 |
|
|
real (kind=dp) :: fxradial, fyradial, fzradial |
482 |
|
|
|
483 |
chrisfen |
198 |
real (kind=dp) :: plm_i(0:LMAX,0:MMAX), dlm_i(0:LMAX,0:MMAX) |
484 |
|
|
real (kind=dp) :: plm_j(0:LMAX,0:MMAX), dlm_j(0:LMAX,0:MMAX) |
485 |
|
|
real (kind=dp) :: tm_i(0:MMAX), dtm_i(0:MMAX), um_i(0:MMAX), dum_i(0:MMAX) |
486 |
|
|
real (kind=dp) :: tm_j(0:MMAX), dtm_j(0:MMAX), um_j(0:MMAX), dum_j(0:MMAX) |
487 |
chrisfen |
195 |
|
488 |
gezelter |
115 |
if (.not.haveShapeMap) then |
489 |
|
|
call handleError("calc_shape", "NO SHAPEMAP!!!!") |
490 |
|
|
return |
491 |
|
|
endif |
492 |
|
|
|
493 |
|
|
!! We assume that the rotation matrices have already been calculated |
494 |
|
|
!! and placed in the A array. |
495 |
chrisfen |
195 |
|
496 |
gezelter |
115 |
r3 = r2*rij |
497 |
|
|
r5 = r3*r2 |
498 |
|
|
|
499 |
|
|
drdxi = -d(1) / rij |
500 |
|
|
drdyi = -d(2) / rij |
501 |
|
|
drdzi = -d(3) / rij |
502 |
|
|
|
503 |
|
|
drdxj = d(1) / rij |
504 |
|
|
drdyj = d(2) / rij |
505 |
|
|
drdzj = d(3) / rij |
506 |
|
|
|
507 |
|
|
! find the atom type id (atid) for each atom: |
508 |
|
|
#ifdef IS_MPI |
509 |
|
|
atid1 = atid_Row(atom1) |
510 |
|
|
atid2 = atid_Col(atom2) |
511 |
|
|
#else |
512 |
|
|
atid1 = atid(atom1) |
513 |
|
|
atid2 = atid(atom2) |
514 |
|
|
#endif |
515 |
|
|
|
516 |
|
|
! use the atid to find the shape type (st) for each atom: |
517 |
|
|
st1 = ShapeMap%atidToShape(atid1) |
518 |
|
|
st2 = ShapeMap%atidToShape(atid2) |
519 |
chrisfen |
195 |
|
520 |
gezelter |
115 |
if (ShapeMap%Shapes(st1)%isLJ) then |
521 |
chrisfen |
195 |
|
522 |
gezelter |
115 |
sigma_i = ShapeMap%Shapes(st1)%sigma |
523 |
|
|
s_i = ShapeMap%Shapes(st1)%sigma |
524 |
|
|
eps_i = ShapeMap%Shapes(st1)%epsilon |
525 |
|
|
dsigmaidx = 0.0d0 |
526 |
|
|
dsigmaidy = 0.0d0 |
527 |
|
|
dsigmaidz = 0.0d0 |
528 |
|
|
dsigmaidux = 0.0d0 |
529 |
|
|
dsigmaiduy = 0.0d0 |
530 |
|
|
dsigmaiduz = 0.0d0 |
531 |
|
|
dsidx = 0.0d0 |
532 |
|
|
dsidy = 0.0d0 |
533 |
|
|
dsidz = 0.0d0 |
534 |
|
|
dsidux = 0.0d0 |
535 |
|
|
dsiduy = 0.0d0 |
536 |
|
|
dsiduz = 0.0d0 |
537 |
|
|
depsidx = 0.0d0 |
538 |
|
|
depsidy = 0.0d0 |
539 |
|
|
depsidz = 0.0d0 |
540 |
|
|
depsidux = 0.0d0 |
541 |
|
|
depsiduy = 0.0d0 |
542 |
|
|
depsiduz = 0.0d0 |
543 |
|
|
else |
544 |
|
|
|
545 |
|
|
#ifdef IS_MPI |
546 |
|
|
! rotate the inter-particle separation into the two different |
547 |
|
|
! body-fixed coordinate systems: |
548 |
|
|
|
549 |
|
|
xi = A_row(1,atom1)*d(1) + A_row(2,atom1)*d(2) + A_row(3,atom1)*d(3) |
550 |
|
|
yi = A_row(4,atom1)*d(1) + A_row(5,atom1)*d(2) + A_row(6,atom1)*d(3) |
551 |
|
|
zi = A_row(7,atom1)*d(1) + A_row(8,atom1)*d(2) + A_row(9,atom1)*d(3) |
552 |
|
|
|
553 |
|
|
#else |
554 |
|
|
! rotate the inter-particle separation into the two different |
555 |
|
|
! body-fixed coordinate systems: |
556 |
|
|
|
557 |
|
|
xi = a(1,atom1)*d(1) + a(2,atom1)*d(2) + a(3,atom1)*d(3) |
558 |
|
|
yi = a(4,atom1)*d(1) + a(5,atom1)*d(2) + a(6,atom1)*d(3) |
559 |
|
|
zi = a(7,atom1)*d(1) + a(8,atom1)*d(2) + a(9,atom1)*d(3) |
560 |
|
|
|
561 |
|
|
#endif |
562 |
chrisfen |
195 |
|
563 |
gezelter |
115 |
xi2 = xi*xi |
564 |
|
|
yi2 = yi*yi |
565 |
gezelter |
203 |
zi2 = zi*zi |
566 |
gezelter |
115 |
cti = zi / rij |
567 |
chrisfen |
195 |
|
568 |
gezelter |
203 |
if (cti .gt. 1.0_dp) cti = 1.0_dp |
569 |
|
|
if (cti .lt. -1.0_dp) cti = -1.0_dp |
570 |
|
|
|
571 |
gezelter |
115 |
dctidx = - zi * xi / r3 |
572 |
|
|
dctidy = - zi * yi / r3 |
573 |
|
|
dctidz = 1.0d0 / rij - zi2 / r3 |
574 |
chrisfen |
210 |
dctidux = - (zi * xi2) / r3 |
575 |
|
|
dctiduy = - (zi * yi2) / r3 |
576 |
|
|
dctiduz = zi / rij - (zi2 * zi) / r3 |
577 |
gezelter |
203 |
|
578 |
|
|
! this is an attempt to try to truncate the singularity when |
579 |
|
|
! sin(theta) is near 0.0: |
580 |
|
|
|
581 |
|
|
sti2 = 1.0_dp - cti*cti |
582 |
|
|
if (dabs(sti2) .lt. 1.0d-12) then |
583 |
|
|
proji = sqrt(rij * 1.0d-12) |
584 |
|
|
dcpidx = 1.0d0 / proji |
585 |
|
|
dcpidy = 0.0d0 |
586 |
chrisfen |
210 |
dcpidux = xi / proji |
587 |
|
|
dcpiduy = 0.0d0 |
588 |
gezelter |
203 |
dspidx = 0.0d0 |
589 |
|
|
dspidy = 1.0d0 / proji |
590 |
chrisfen |
210 |
dspidux = 0.0d0 |
591 |
|
|
dspiduy = yi / proji |
592 |
gezelter |
203 |
else |
593 |
|
|
proji = sqrt(xi2 + yi2) |
594 |
|
|
proji3 = proji*proji*proji |
595 |
|
|
dcpidx = 1.0d0 / proji - xi2 / proji3 |
596 |
|
|
dcpidy = - xi * yi / proji3 |
597 |
chrisfen |
210 |
dcpidux = xi / proji - (xi2 * xi) / proji3 |
598 |
|
|
dcpiduy = - (xi * yi2) / proji3 |
599 |
gezelter |
203 |
dspidx = - xi * yi / proji3 |
600 |
|
|
dspidy = 1.0d0 / proji - yi2 / proji3 |
601 |
chrisfen |
210 |
dspidux = - (yi * xi2) / proji3 |
602 |
|
|
dspiduy = yi / proji - (yi2 * yi) / proji3 |
603 |
gezelter |
203 |
endif |
604 |
gezelter |
115 |
|
605 |
|
|
cpi = xi / proji |
606 |
|
|
dcpidz = 0.0d0 |
607 |
chrisfen |
210 |
dcpiduz = 0.0d0 |
608 |
gezelter |
115 |
|
609 |
|
|
spi = yi / proji |
610 |
|
|
dspidz = 0.0d0 |
611 |
chrisfen |
210 |
dspiduz = 0.0d0 |
612 |
gezelter |
115 |
|
613 |
chrisfen |
198 |
call Associated_Legendre(cti, ShapeMap%Shapes(st1)%bigM, & |
614 |
|
|
ShapeMap%Shapes(st1)%bigL, LMAX, & |
615 |
chrisfen |
195 |
plm_i, dlm_i) |
616 |
gezelter |
115 |
|
617 |
chrisfen |
195 |
call Orthogonal_Polynomial(cpi, ShapeMap%Shapes(st1)%bigM, MMAX, & |
618 |
gezelter |
115 |
CHEBYSHEV_TN, tm_i, dtm_i) |
619 |
chrisfen |
195 |
call Orthogonal_Polynomial(cpi, ShapeMap%Shapes(st1)%bigM, MMAX, & |
620 |
gezelter |
115 |
CHEBYSHEV_UN, um_i, dum_i) |
621 |
|
|
|
622 |
|
|
sigma_i = 0.0d0 |
623 |
|
|
s_i = 0.0d0 |
624 |
|
|
eps_i = 0.0d0 |
625 |
|
|
dsigmaidx = 0.0d0 |
626 |
|
|
dsigmaidy = 0.0d0 |
627 |
|
|
dsigmaidz = 0.0d0 |
628 |
|
|
dsigmaidux = 0.0d0 |
629 |
|
|
dsigmaiduy = 0.0d0 |
630 |
|
|
dsigmaiduz = 0.0d0 |
631 |
|
|
dsidx = 0.0d0 |
632 |
|
|
dsidy = 0.0d0 |
633 |
|
|
dsidz = 0.0d0 |
634 |
|
|
dsidux = 0.0d0 |
635 |
|
|
dsiduy = 0.0d0 |
636 |
|
|
dsiduz = 0.0d0 |
637 |
|
|
depsidx = 0.0d0 |
638 |
|
|
depsidy = 0.0d0 |
639 |
|
|
depsidz = 0.0d0 |
640 |
|
|
depsidux = 0.0d0 |
641 |
|
|
depsiduy = 0.0d0 |
642 |
|
|
depsiduz = 0.0d0 |
643 |
|
|
|
644 |
|
|
do lm = 1, ShapeMap%Shapes(st1)%nContactFuncs |
645 |
|
|
l = ShapeMap%Shapes(st1)%ContactFuncLValue(lm) |
646 |
|
|
m = ShapeMap%Shapes(st1)%ContactFuncMValue(lm) |
647 |
|
|
coeff = ShapeMap%Shapes(st1)%ContactFuncCoefficient(lm) |
648 |
|
|
function_type = ShapeMap%Shapes(st1)%ContactFunctionType(lm) |
649 |
|
|
|
650 |
|
|
if ((function_type .eq. SH_COS).or.(m.eq.0)) then |
651 |
|
|
Phunc = coeff * tm_i(m) |
652 |
|
|
dPhuncdX = coeff * dtm_i(m) * dcpidx |
653 |
|
|
dPhuncdY = coeff * dtm_i(m) * dcpidy |
654 |
|
|
dPhuncdZ = coeff * dtm_i(m) * dcpidz |
655 |
|
|
dPhuncdUz = coeff * dtm_i(m) * dcpidux |
656 |
|
|
dPhuncdUy = coeff * dtm_i(m) * dcpiduy |
657 |
|
|
dPhuncdUz = coeff * dtm_i(m) * dcpiduz |
658 |
|
|
else |
659 |
|
|
Phunc = coeff * spi * um_i(m-1) |
660 |
|
|
dPhuncdX = coeff * (spi * dum_i(m-1) * dcpidx + dspidx *um_i(m-1)) |
661 |
|
|
dPhuncdY = coeff * (spi * dum_i(m-1) * dcpidy + dspidy *um_i(m-1)) |
662 |
|
|
dPhuncdZ = coeff * (spi * dum_i(m-1) * dcpidz + dspidz *um_i(m-1)) |
663 |
|
|
dPhuncdUx = coeff*(spi * dum_i(m-1)*dcpidux + dspidux *um_i(m-1)) |
664 |
|
|
dPhuncdUy = coeff*(spi * dum_i(m-1)*dcpiduy + dspiduy *um_i(m-1)) |
665 |
|
|
dPhuncdUz = coeff*(spi * dum_i(m-1)*dcpiduz + dspiduz *um_i(m-1)) |
666 |
|
|
endif |
667 |
|
|
|
668 |
chrisfen |
198 |
sigma_i = sigma_i + plm_i(m,l)*Phunc |
669 |
|
|
|
670 |
|
|
dsigmaidx = dsigmaidx + plm_i(m,l)*dPhuncdX + & |
671 |
|
|
Phunc * dlm_i(m,l) * dctidx |
672 |
|
|
dsigmaidy = dsigmaidy + plm_i(m,l)*dPhuncdY + & |
673 |
|
|
Phunc * dlm_i(m,l) * dctidy |
674 |
|
|
dsigmaidz = dsigmaidz + plm_i(m,l)*dPhuncdZ + & |
675 |
|
|
Phunc * dlm_i(m,l) * dctidz |
676 |
gezelter |
115 |
|
677 |
chrisfen |
198 |
dsigmaidux = dsigmaidux + plm_i(m,l)* dPhuncdUx + & |
678 |
|
|
Phunc * dlm_i(m,l) * dctidux |
679 |
|
|
dsigmaiduy = dsigmaiduy + plm_i(m,l)* dPhuncdUy + & |
680 |
|
|
Phunc * dlm_i(m,l) * dctiduy |
681 |
|
|
dsigmaiduz = dsigmaiduz + plm_i(m,l)* dPhuncdUz + & |
682 |
|
|
Phunc * dlm_i(m,l) * dctiduz |
683 |
gezelter |
115 |
|
684 |
|
|
end do |
685 |
|
|
|
686 |
|
|
do lm = 1, ShapeMap%Shapes(st1)%nRangeFuncs |
687 |
|
|
l = ShapeMap%Shapes(st1)%RangeFuncLValue(lm) |
688 |
|
|
m = ShapeMap%Shapes(st1)%RangeFuncMValue(lm) |
689 |
|
|
coeff = ShapeMap%Shapes(st1)%RangeFuncCoefficient(lm) |
690 |
|
|
function_type = ShapeMap%Shapes(st1)%RangeFunctionType(lm) |
691 |
|
|
|
692 |
|
|
if ((function_type .eq. SH_COS).or.(m.eq.0)) then |
693 |
|
|
Phunc = coeff * tm_i(m) |
694 |
|
|
dPhuncdX = coeff * dtm_i(m) * dcpidx |
695 |
|
|
dPhuncdY = coeff * dtm_i(m) * dcpidy |
696 |
|
|
dPhuncdZ = coeff * dtm_i(m) * dcpidz |
697 |
|
|
dPhuncdUz = coeff * dtm_i(m) * dcpidux |
698 |
|
|
dPhuncdUy = coeff * dtm_i(m) * dcpiduy |
699 |
|
|
dPhuncdUz = coeff * dtm_i(m) * dcpiduz |
700 |
|
|
else |
701 |
|
|
Phunc = coeff * spi * um_i(m-1) |
702 |
|
|
dPhuncdX = coeff * (spi * dum_i(m-1) * dcpidx + dspidx *um_i(m-1)) |
703 |
|
|
dPhuncdY = coeff * (spi * dum_i(m-1) * dcpidy + dspidy *um_i(m-1)) |
704 |
|
|
dPhuncdZ = coeff * (spi * dum_i(m-1) * dcpidz + dspidz *um_i(m-1)) |
705 |
|
|
dPhuncdUx = coeff*(spi * dum_i(m-1)*dcpidux + dspidux *um_i(m-1)) |
706 |
|
|
dPhuncdUy = coeff*(spi * dum_i(m-1)*dcpiduy + dspiduy *um_i(m-1)) |
707 |
|
|
dPhuncdUz = coeff*(spi * dum_i(m-1)*dcpiduz + dspiduz *um_i(m-1)) |
708 |
|
|
endif |
709 |
|
|
|
710 |
chrisfen |
198 |
s_i = s_i + plm_i(m,l)*Phunc |
711 |
chrisfen |
210 |
|
712 |
chrisfen |
198 |
dsidx = dsidx + plm_i(m,l)*dPhuncdX + & |
713 |
|
|
Phunc * dlm_i(m,l) * dctidx |
714 |
|
|
dsidy = dsidy + plm_i(m,l)*dPhuncdY + & |
715 |
|
|
Phunc * dlm_i(m,l) * dctidy |
716 |
|
|
dsidz = dsidz + plm_i(m,l)*dPhuncdZ + & |
717 |
|
|
Phunc * dlm_i(m,l) * dctidz |
718 |
gezelter |
115 |
|
719 |
chrisfen |
198 |
dsidux = dsidux + plm_i(m,l)* dPhuncdUx + & |
720 |
|
|
Phunc * dlm_i(m,l) * dctidux |
721 |
|
|
dsiduy = dsiduy + plm_i(m,l)* dPhuncdUy + & |
722 |
|
|
Phunc * dlm_i(m,l) * dctiduy |
723 |
|
|
dsiduz = dsiduz + plm_i(m,l)* dPhuncdUz + & |
724 |
|
|
Phunc * dlm_i(m,l) * dctiduz |
725 |
gezelter |
115 |
|
726 |
|
|
end do |
727 |
|
|
|
728 |
|
|
do lm = 1, ShapeMap%Shapes(st1)%nStrengthFuncs |
729 |
|
|
l = ShapeMap%Shapes(st1)%StrengthFuncLValue(lm) |
730 |
|
|
m = ShapeMap%Shapes(st1)%StrengthFuncMValue(lm) |
731 |
|
|
coeff = ShapeMap%Shapes(st1)%StrengthFuncCoefficient(lm) |
732 |
|
|
function_type = ShapeMap%Shapes(st1)%StrengthFunctionType(lm) |
733 |
|
|
|
734 |
|
|
if ((function_type .eq. SH_COS).or.(m.eq.0)) then |
735 |
|
|
Phunc = coeff * tm_i(m) |
736 |
|
|
dPhuncdX = coeff * dtm_i(m) * dcpidx |
737 |
|
|
dPhuncdY = coeff * dtm_i(m) * dcpidy |
738 |
|
|
dPhuncdZ = coeff * dtm_i(m) * dcpidz |
739 |
|
|
dPhuncdUz = coeff * dtm_i(m) * dcpidux |
740 |
|
|
dPhuncdUy = coeff * dtm_i(m) * dcpiduy |
741 |
|
|
dPhuncdUz = coeff * dtm_i(m) * dcpiduz |
742 |
|
|
else |
743 |
|
|
Phunc = coeff * spi * um_i(m-1) |
744 |
|
|
dPhuncdX = coeff * (spi * dum_i(m-1) * dcpidx + dspidx *um_i(m-1)) |
745 |
|
|
dPhuncdY = coeff * (spi * dum_i(m-1) * dcpidy + dspidy *um_i(m-1)) |
746 |
|
|
dPhuncdZ = coeff * (spi * dum_i(m-1) * dcpidz + dspidz *um_i(m-1)) |
747 |
|
|
dPhuncdUx = coeff*(spi * dum_i(m-1)*dcpidux + dspidux *um_i(m-1)) |
748 |
|
|
dPhuncdUy = coeff*(spi * dum_i(m-1)*dcpiduy + dspiduy *um_i(m-1)) |
749 |
|
|
dPhuncdUz = coeff*(spi * dum_i(m-1)*dcpiduz + dspiduz *um_i(m-1)) |
750 |
|
|
endif |
751 |
chrisfen |
198 |
|
752 |
|
|
eps_i = eps_i + plm_i(m,l)*Phunc |
753 |
gezelter |
115 |
|
754 |
chrisfen |
198 |
depsidx = depsidx + plm_i(m,l)*dPhuncdX + & |
755 |
|
|
Phunc * dlm_i(m,l) * dctidx |
756 |
|
|
depsidy = depsidy + plm_i(m,l)*dPhuncdY + & |
757 |
|
|
Phunc * dlm_i(m,l) * dctidy |
758 |
|
|
depsidz = depsidz + plm_i(m,l)*dPhuncdZ + & |
759 |
|
|
Phunc * dlm_i(m,l) * dctidz |
760 |
gezelter |
115 |
|
761 |
chrisfen |
198 |
depsidux = depsidux + plm_i(m,l)* dPhuncdUx + & |
762 |
|
|
Phunc * dlm_i(m,l) * dctidux |
763 |
|
|
depsiduy = depsiduy + plm_i(m,l)* dPhuncdUy + & |
764 |
|
|
Phunc * dlm_i(m,l) * dctiduy |
765 |
|
|
depsiduz = depsiduz + plm_i(m,l)* dPhuncdUz + & |
766 |
|
|
Phunc * dlm_i(m,l) * dctiduz |
767 |
gezelter |
115 |
|
768 |
|
|
end do |
769 |
|
|
|
770 |
|
|
endif |
771 |
|
|
|
772 |
|
|
! now do j: |
773 |
|
|
|
774 |
|
|
if (ShapeMap%Shapes(st2)%isLJ) then |
775 |
|
|
sigma_j = ShapeMap%Shapes(st2)%sigma |
776 |
|
|
s_j = ShapeMap%Shapes(st2)%sigma |
777 |
|
|
eps_j = ShapeMap%Shapes(st2)%epsilon |
778 |
|
|
dsigmajdx = 0.0d0 |
779 |
|
|
dsigmajdy = 0.0d0 |
780 |
|
|
dsigmajdz = 0.0d0 |
781 |
|
|
dsigmajdux = 0.0d0 |
782 |
|
|
dsigmajduy = 0.0d0 |
783 |
|
|
dsigmajduz = 0.0d0 |
784 |
|
|
dsjdx = 0.0d0 |
785 |
|
|
dsjdy = 0.0d0 |
786 |
|
|
dsjdz = 0.0d0 |
787 |
|
|
dsjdux = 0.0d0 |
788 |
|
|
dsjduy = 0.0d0 |
789 |
|
|
dsjduz = 0.0d0 |
790 |
|
|
depsjdx = 0.0d0 |
791 |
|
|
depsjdy = 0.0d0 |
792 |
|
|
depsjdz = 0.0d0 |
793 |
|
|
depsjdux = 0.0d0 |
794 |
|
|
depsjduy = 0.0d0 |
795 |
|
|
depsjduz = 0.0d0 |
796 |
|
|
else |
797 |
|
|
|
798 |
|
|
#ifdef IS_MPI |
799 |
|
|
! rotate the inter-particle separation into the two different |
800 |
|
|
! body-fixed coordinate systems: |
801 |
|
|
! negative sign because this is the vector from j to i: |
802 |
|
|
|
803 |
|
|
xj = -(A_Col(1,atom2)*d(1) + A_Col(2,atom2)*d(2) + A_Col(3,atom2)*d(3)) |
804 |
|
|
yj = -(A_Col(4,atom2)*d(1) + A_Col(5,atom2)*d(2) + A_Col(6,atom2)*d(3)) |
805 |
|
|
zj = -(A_Col(7,atom2)*d(1) + A_Col(8,atom2)*d(2) + A_Col(9,atom2)*d(3)) |
806 |
|
|
#else |
807 |
|
|
! rotate the inter-particle separation into the two different |
808 |
|
|
! body-fixed coordinate systems: |
809 |
|
|
! negative sign because this is the vector from j to i: |
810 |
|
|
|
811 |
|
|
xj = -(a(1,atom2)*d(1) + a(2,atom2)*d(2) + a(3,atom2)*d(3)) |
812 |
|
|
yj = -(a(4,atom2)*d(1) + a(5,atom2)*d(2) + a(6,atom2)*d(3)) |
813 |
|
|
zj = -(a(7,atom2)*d(1) + a(8,atom2)*d(2) + a(9,atom2)*d(3)) |
814 |
|
|
#endif |
815 |
|
|
|
816 |
|
|
xj2 = xj*xj |
817 |
|
|
yj2 = yj*yj |
818 |
|
|
zj2 = zj*zj |
819 |
gezelter |
203 |
ctj = zj / rij |
820 |
gezelter |
115 |
|
821 |
gezelter |
203 |
if (ctj .gt. 1.0_dp) ctj = 1.0_dp |
822 |
|
|
if (ctj .lt. -1.0_dp) ctj = -1.0_dp |
823 |
|
|
|
824 |
gezelter |
115 |
dctjdx = - zj * xj / r3 |
825 |
|
|
dctjdy = - zj * yj / r3 |
826 |
|
|
dctjdz = 1.0d0 / rij - zj2 / r3 |
827 |
chrisfen |
210 |
dctjdux = - (zi * xj2) / r3 |
828 |
|
|
dctjduy = - (zj * yj2) / r3 |
829 |
|
|
dctjduz = zj / rij - (zj2 * zj) / r3 |
830 |
gezelter |
115 |
|
831 |
gezelter |
203 |
! this is an attempt to try to truncate the singularity when |
832 |
|
|
! sin(theta) is near 0.0: |
833 |
|
|
|
834 |
|
|
stj2 = 1.0_dp - ctj*ctj |
835 |
|
|
if (dabs(stj2) .lt. 1.0d-12) then |
836 |
|
|
projj = sqrt(rij * 1.0d-12) |
837 |
|
|
dcpjdx = 1.0d0 / projj |
838 |
|
|
dcpjdy = 0.0d0 |
839 |
chrisfen |
210 |
dcpjdux = xj / projj |
840 |
|
|
dcpjduy = 0.0d0 |
841 |
gezelter |
203 |
dspjdx = 0.0d0 |
842 |
|
|
dspjdy = 1.0d0 / projj |
843 |
chrisfen |
210 |
dspjdux = 0.0d0 |
844 |
|
|
dspjduy = yj / projj |
845 |
gezelter |
203 |
else |
846 |
|
|
projj = sqrt(xj2 + yj2) |
847 |
|
|
projj3 = projj*projj*projj |
848 |
|
|
dcpjdx = 1.0d0 / projj - xj2 / projj3 |
849 |
|
|
dcpjdy = - xj * yj / projj3 |
850 |
chrisfen |
210 |
dcpjdux = xj / projj - (xj2 * xj) / projj3 |
851 |
|
|
dcpjduy = - (xj * yj2) / projj3 |
852 |
gezelter |
203 |
dspjdx = - xj * yj / projj3 |
853 |
|
|
dspjdy = 1.0d0 / projj - yj2 / projj3 |
854 |
chrisfen |
210 |
dspjdux = - (yj * xj2) / projj3 |
855 |
|
|
dspjduy = yj / projj - (yj2 * yj) / projj3 |
856 |
gezelter |
203 |
endif |
857 |
|
|
|
858 |
gezelter |
115 |
cpj = xj / projj |
859 |
|
|
dcpjdz = 0.0d0 |
860 |
chrisfen |
210 |
dcpjduz = 0.0d0 |
861 |
gezelter |
115 |
|
862 |
|
|
spj = yj / projj |
863 |
|
|
dspjdz = 0.0d0 |
864 |
chrisfen |
210 |
dspjduz = 0.0d0 |
865 |
gezelter |
203 |
|
866 |
chrisfen |
210 |
|
867 |
|
|
write(*,*) 'dcpdu = ' ,dcpidux, dcpiduy, dcpiduz |
868 |
|
|
write(*,*) 'dcpdu = ' ,dcpjdux, dcpjduy, dcpjduz |
869 |
chrisfen |
198 |
call Associated_Legendre(ctj, ShapeMap%Shapes(st2)%bigM, & |
870 |
|
|
ShapeMap%Shapes(st2)%bigL, LMAX, & |
871 |
chrisfen |
195 |
plm_j, dlm_j) |
872 |
gezelter |
115 |
|
873 |
chrisfen |
195 |
call Orthogonal_Polynomial(cpj, ShapeMap%Shapes(st2)%bigM, MMAX, & |
874 |
gezelter |
115 |
CHEBYSHEV_TN, tm_j, dtm_j) |
875 |
chrisfen |
195 |
call Orthogonal_Polynomial(cpj, ShapeMap%Shapes(st2)%bigM, MMAX, & |
876 |
gezelter |
115 |
CHEBYSHEV_UN, um_j, dum_j) |
877 |
|
|
|
878 |
|
|
sigma_j = 0.0d0 |
879 |
|
|
s_j = 0.0d0 |
880 |
|
|
eps_j = 0.0d0 |
881 |
|
|
dsigmajdx = 0.0d0 |
882 |
|
|
dsigmajdy = 0.0d0 |
883 |
|
|
dsigmajdz = 0.0d0 |
884 |
|
|
dsigmajdux = 0.0d0 |
885 |
|
|
dsigmajduy = 0.0d0 |
886 |
|
|
dsigmajduz = 0.0d0 |
887 |
|
|
dsjdx = 0.0d0 |
888 |
|
|
dsjdy = 0.0d0 |
889 |
|
|
dsjdz = 0.0d0 |
890 |
|
|
dsjdux = 0.0d0 |
891 |
|
|
dsjduy = 0.0d0 |
892 |
|
|
dsjduz = 0.0d0 |
893 |
|
|
depsjdx = 0.0d0 |
894 |
|
|
depsjdy = 0.0d0 |
895 |
|
|
depsjdz = 0.0d0 |
896 |
|
|
depsjdux = 0.0d0 |
897 |
|
|
depsjduy = 0.0d0 |
898 |
|
|
depsjduz = 0.0d0 |
899 |
|
|
|
900 |
|
|
do lm = 1, ShapeMap%Shapes(st2)%nContactFuncs |
901 |
|
|
l = ShapeMap%Shapes(st2)%ContactFuncLValue(lm) |
902 |
|
|
m = ShapeMap%Shapes(st2)%ContactFuncMValue(lm) |
903 |
|
|
coeff = ShapeMap%Shapes(st2)%ContactFuncCoefficient(lm) |
904 |
|
|
function_type = ShapeMap%Shapes(st2)%ContactFunctionType(lm) |
905 |
|
|
|
906 |
|
|
if ((function_type .eq. SH_COS).or.(m.eq.0)) then |
907 |
|
|
Phunc = coeff * tm_j(m) |
908 |
|
|
dPhuncdX = coeff * dtm_j(m) * dcpjdx |
909 |
|
|
dPhuncdY = coeff * dtm_j(m) * dcpjdy |
910 |
|
|
dPhuncdZ = coeff * dtm_j(m) * dcpjdz |
911 |
|
|
dPhuncdUz = coeff * dtm_j(m) * dcpjdux |
912 |
|
|
dPhuncdUy = coeff * dtm_j(m) * dcpjduy |
913 |
|
|
dPhuncdUz = coeff * dtm_j(m) * dcpjduz |
914 |
|
|
else |
915 |
|
|
Phunc = coeff * spj * um_j(m-1) |
916 |
|
|
dPhuncdX = coeff * (spj * dum_j(m-1) * dcpjdx + dspjdx *um_j(m-1)) |
917 |
|
|
dPhuncdY = coeff * (spj * dum_j(m-1) * dcpjdy + dspjdy *um_j(m-1)) |
918 |
|
|
dPhuncdZ = coeff * (spj * dum_j(m-1) * dcpjdz + dspjdz *um_j(m-1)) |
919 |
|
|
dPhuncdUx = coeff*(spj * dum_j(m-1)*dcpjdux + dspjdux *um_j(m-1)) |
920 |
|
|
dPhuncdUy = coeff*(spj * dum_j(m-1)*dcpjduy + dspjduy *um_j(m-1)) |
921 |
|
|
dPhuncdUz = coeff*(spj * dum_j(m-1)*dcpjduz + dspjduz *um_j(m-1)) |
922 |
|
|
endif |
923 |
|
|
|
924 |
chrisfen |
198 |
sigma_j = sigma_j + plm_j(m,l)*Phunc |
925 |
gezelter |
115 |
|
926 |
chrisfen |
198 |
dsigmajdx = dsigmajdx + plm_j(m,l)*dPhuncdX + & |
927 |
|
|
Phunc * dlm_j(m,l) * dctjdx |
928 |
|
|
dsigmajdy = dsigmajdy + plm_j(m,l)*dPhuncdY + & |
929 |
|
|
Phunc * dlm_j(m,l) * dctjdy |
930 |
|
|
dsigmajdz = dsigmajdz + plm_j(m,l)*dPhuncdZ + & |
931 |
|
|
Phunc * dlm_j(m,l) * dctjdz |
932 |
gezelter |
115 |
|
933 |
chrisfen |
198 |
dsigmajdux = dsigmajdux + plm_j(m,l)* dPhuncdUx + & |
934 |
|
|
Phunc * dlm_j(m,l) * dctjdux |
935 |
|
|
dsigmajduy = dsigmajduy + plm_j(m,l)* dPhuncdUy + & |
936 |
|
|
Phunc * dlm_j(m,l) * dctjduy |
937 |
|
|
dsigmajduz = dsigmajduz + plm_j(m,l)* dPhuncdUz + & |
938 |
|
|
Phunc * dlm_j(m,l) * dctjduz |
939 |
gezelter |
115 |
|
940 |
|
|
end do |
941 |
|
|
|
942 |
|
|
do lm = 1, ShapeMap%Shapes(st2)%nRangeFuncs |
943 |
|
|
l = ShapeMap%Shapes(st2)%RangeFuncLValue(lm) |
944 |
|
|
m = ShapeMap%Shapes(st2)%RangeFuncMValue(lm) |
945 |
|
|
coeff = ShapeMap%Shapes(st2)%RangeFuncCoefficient(lm) |
946 |
|
|
function_type = ShapeMap%Shapes(st2)%RangeFunctionType(lm) |
947 |
|
|
|
948 |
|
|
if ((function_type .eq. SH_COS).or.(m.eq.0)) then |
949 |
|
|
Phunc = coeff * tm_j(m) |
950 |
|
|
dPhuncdX = coeff * dtm_j(m) * dcpjdx |
951 |
|
|
dPhuncdY = coeff * dtm_j(m) * dcpjdy |
952 |
|
|
dPhuncdZ = coeff * dtm_j(m) * dcpjdz |
953 |
|
|
dPhuncdUz = coeff * dtm_j(m) * dcpjdux |
954 |
|
|
dPhuncdUy = coeff * dtm_j(m) * dcpjduy |
955 |
|
|
dPhuncdUz = coeff * dtm_j(m) * dcpjduz |
956 |
|
|
else |
957 |
|
|
Phunc = coeff * spj * um_j(m-1) |
958 |
|
|
dPhuncdX = coeff * (spj * dum_j(m-1) * dcpjdx + dspjdx *um_j(m-1)) |
959 |
|
|
dPhuncdY = coeff * (spj * dum_j(m-1) * dcpjdy + dspjdy *um_j(m-1)) |
960 |
|
|
dPhuncdZ = coeff * (spj * dum_j(m-1) * dcpjdz + dspjdz *um_j(m-1)) |
961 |
|
|
dPhuncdUx = coeff*(spj * dum_j(m-1)*dcpjdux + dspjdux *um_j(m-1)) |
962 |
|
|
dPhuncdUy = coeff*(spj * dum_j(m-1)*dcpjduy + dspjduy *um_j(m-1)) |
963 |
|
|
dPhuncdUz = coeff*(spj * dum_j(m-1)*dcpjduz + dspjduz *um_j(m-1)) |
964 |
|
|
endif |
965 |
|
|
|
966 |
chrisfen |
198 |
s_j = s_j + plm_j(m,l)*Phunc |
967 |
gezelter |
115 |
|
968 |
chrisfen |
198 |
dsjdx = dsjdx + plm_j(m,l)*dPhuncdX + & |
969 |
|
|
Phunc * dlm_j(m,l) * dctjdx |
970 |
|
|
dsjdy = dsjdy + plm_j(m,l)*dPhuncdY + & |
971 |
|
|
Phunc * dlm_j(m,l) * dctjdy |
972 |
|
|
dsjdz = dsjdz + plm_j(m,l)*dPhuncdZ + & |
973 |
|
|
Phunc * dlm_j(m,l) * dctjdz |
974 |
gezelter |
115 |
|
975 |
chrisfen |
198 |
dsjdux = dsjdux + plm_j(m,l)* dPhuncdUx + & |
976 |
|
|
Phunc * dlm_j(m,l) * dctjdux |
977 |
|
|
dsjduy = dsjduy + plm_j(m,l)* dPhuncdUy + & |
978 |
|
|
Phunc * dlm_j(m,l) * dctjduy |
979 |
|
|
dsjduz = dsjduz + plm_j(m,l)* dPhuncdUz + & |
980 |
|
|
Phunc * dlm_j(m,l) * dctjduz |
981 |
gezelter |
115 |
|
982 |
|
|
end do |
983 |
|
|
|
984 |
|
|
do lm = 1, ShapeMap%Shapes(st2)%nStrengthFuncs |
985 |
|
|
l = ShapeMap%Shapes(st2)%StrengthFuncLValue(lm) |
986 |
|
|
m = ShapeMap%Shapes(st2)%StrengthFuncMValue(lm) |
987 |
|
|
coeff = ShapeMap%Shapes(st2)%StrengthFuncCoefficient(lm) |
988 |
|
|
function_type = ShapeMap%Shapes(st2)%StrengthFunctionType(lm) |
989 |
|
|
|
990 |
|
|
if ((function_type .eq. SH_COS).or.(m.eq.0)) then |
991 |
|
|
Phunc = coeff * tm_j(m) |
992 |
|
|
dPhuncdX = coeff * dtm_j(m) * dcpjdx |
993 |
|
|
dPhuncdY = coeff * dtm_j(m) * dcpjdy |
994 |
|
|
dPhuncdZ = coeff * dtm_j(m) * dcpjdz |
995 |
|
|
dPhuncdUz = coeff * dtm_j(m) * dcpjdux |
996 |
|
|
dPhuncdUy = coeff * dtm_j(m) * dcpjduy |
997 |
|
|
dPhuncdUz = coeff * dtm_j(m) * dcpjduz |
998 |
|
|
else |
999 |
|
|
Phunc = coeff * spj * um_j(m-1) |
1000 |
|
|
dPhuncdX = coeff * (spj * dum_j(m-1) * dcpjdx + dspjdx *um_j(m-1)) |
1001 |
|
|
dPhuncdY = coeff * (spj * dum_j(m-1) * dcpjdy + dspjdy *um_j(m-1)) |
1002 |
|
|
dPhuncdZ = coeff * (spj * dum_j(m-1) * dcpjdz + dspjdz *um_j(m-1)) |
1003 |
|
|
dPhuncdUx = coeff*(spj * dum_j(m-1)*dcpjdux + dspjdux *um_j(m-1)) |
1004 |
|
|
dPhuncdUy = coeff*(spj * dum_j(m-1)*dcpjduy + dspjduy *um_j(m-1)) |
1005 |
|
|
dPhuncdUz = coeff*(spj * dum_j(m-1)*dcpjduz + dspjduz *um_j(m-1)) |
1006 |
|
|
endif |
1007 |
|
|
|
1008 |
chrisfen |
210 |
write(*,*) 'l,m = ', l, m, coeff, dPhuncdUx, dPhuncdUy, dPhuncdUz |
1009 |
|
|
|
1010 |
chrisfen |
198 |
eps_j = eps_j + plm_j(m,l)*Phunc |
1011 |
gezelter |
115 |
|
1012 |
chrisfen |
198 |
depsjdx = depsjdx + plm_j(m,l)*dPhuncdX + & |
1013 |
|
|
Phunc * dlm_j(m,l) * dctjdx |
1014 |
|
|
depsjdy = depsjdy + plm_j(m,l)*dPhuncdY + & |
1015 |
|
|
Phunc * dlm_j(m,l) * dctjdy |
1016 |
|
|
depsjdz = depsjdz + plm_j(m,l)*dPhuncdZ + & |
1017 |
|
|
Phunc * dlm_j(m,l) * dctjdz |
1018 |
gezelter |
115 |
|
1019 |
chrisfen |
198 |
depsjdux = depsjdux + plm_j(m,l)* dPhuncdUx + & |
1020 |
|
|
Phunc * dlm_j(m,l) * dctjdux |
1021 |
|
|
depsjduy = depsjduy + plm_j(m,l)* dPhuncdUy + & |
1022 |
|
|
Phunc * dlm_j(m,l) * dctjduy |
1023 |
|
|
depsjduz = depsjduz + plm_j(m,l)* dPhuncdUz + & |
1024 |
|
|
Phunc * dlm_j(m,l) * dctjduz |
1025 |
gezelter |
115 |
|
1026 |
|
|
end do |
1027 |
|
|
|
1028 |
|
|
endif |
1029 |
|
|
|
1030 |
|
|
! phew, now let's assemble the potential energy: |
1031 |
|
|
|
1032 |
|
|
sigma = 0.5*(sigma_i + sigma_j) |
1033 |
|
|
|
1034 |
|
|
dsigmadxi = 0.5*dsigmaidx |
1035 |
|
|
dsigmadyi = 0.5*dsigmaidy |
1036 |
|
|
dsigmadzi = 0.5*dsigmaidz |
1037 |
|
|
dsigmaduxi = 0.5*dsigmaidux |
1038 |
|
|
dsigmaduyi = 0.5*dsigmaiduy |
1039 |
|
|
dsigmaduzi = 0.5*dsigmaiduz |
1040 |
|
|
|
1041 |
|
|
dsigmadxj = 0.5*dsigmajdx |
1042 |
|
|
dsigmadyj = 0.5*dsigmajdy |
1043 |
|
|
dsigmadzj = 0.5*dsigmajdz |
1044 |
|
|
dsigmaduxj = 0.5*dsigmajdux |
1045 |
|
|
dsigmaduyj = 0.5*dsigmajduy |
1046 |
|
|
dsigmaduzj = 0.5*dsigmajduz |
1047 |
|
|
|
1048 |
|
|
s = 0.5*(s_i + s_j) |
1049 |
|
|
|
1050 |
|
|
dsdxi = 0.5*dsidx |
1051 |
|
|
dsdyi = 0.5*dsidy |
1052 |
|
|
dsdzi = 0.5*dsidz |
1053 |
|
|
dsduxi = 0.5*dsidux |
1054 |
|
|
dsduyi = 0.5*dsiduy |
1055 |
|
|
dsduzi = 0.5*dsiduz |
1056 |
|
|
|
1057 |
|
|
dsdxj = 0.5*dsjdx |
1058 |
|
|
dsdyj = 0.5*dsjdy |
1059 |
|
|
dsdzj = 0.5*dsjdz |
1060 |
|
|
dsduxj = 0.5*dsjdux |
1061 |
|
|
dsduyj = 0.5*dsjduy |
1062 |
|
|
dsduzj = 0.5*dsjduz |
1063 |
chrisfen |
198 |
|
1064 |
gezelter |
115 |
eps = sqrt(eps_i * eps_j) |
1065 |
|
|
|
1066 |
|
|
depsdxi = eps_j * depsidx / (2.0d0 * eps) |
1067 |
|
|
depsdyi = eps_j * depsidy / (2.0d0 * eps) |
1068 |
|
|
depsdzi = eps_j * depsidz / (2.0d0 * eps) |
1069 |
|
|
depsduxi = eps_j * depsidux / (2.0d0 * eps) |
1070 |
|
|
depsduyi = eps_j * depsiduy / (2.0d0 * eps) |
1071 |
|
|
depsduzi = eps_j * depsiduz / (2.0d0 * eps) |
1072 |
|
|
|
1073 |
|
|
depsdxj = eps_i * depsjdx / (2.0d0 * eps) |
1074 |
|
|
depsdyj = eps_i * depsjdy / (2.0d0 * eps) |
1075 |
|
|
depsdzj = eps_i * depsjdz / (2.0d0 * eps) |
1076 |
|
|
depsduxj = eps_i * depsjdux / (2.0d0 * eps) |
1077 |
|
|
depsduyj = eps_i * depsjduy / (2.0d0 * eps) |
1078 |
|
|
depsduzj = eps_i * depsjduz / (2.0d0 * eps) |
1079 |
|
|
|
1080 |
chrisfen |
210 |
!!$ write(*,*) 'depsidu = ', depsidux, depsiduy, depsiduz |
1081 |
|
|
!!$ write(*,*) 'depsjdu = ', depsjdux, depsjduy, depsjduz |
1082 |
|
|
!!$ |
1083 |
|
|
!!$ write(*,*) 'depsdui = ', depsduxi, depsduyi, depsduzi |
1084 |
|
|
!!$ write(*,*) 'depsduj = ', depsduxj, depsduyj, depsduzj |
1085 |
|
|
!!$ |
1086 |
|
|
!!$ write(*,*) 's, sig, eps = ', s, sigma, eps |
1087 |
|
|
|
1088 |
gezelter |
115 |
rtdenom = rij-sigma+s |
1089 |
|
|
rt = s / rtdenom |
1090 |
|
|
|
1091 |
|
|
drtdxi = (dsdxi + rt * (drdxi - dsigmadxi + dsdxi)) / rtdenom |
1092 |
|
|
drtdyi = (dsdyi + rt * (drdyi - dsigmadyi + dsdyi)) / rtdenom |
1093 |
|
|
drtdzi = (dsdzi + rt * (drdzi - dsigmadzi + dsdzi)) / rtdenom |
1094 |
|
|
drtduxi = (dsduxi + rt * (drduxi - dsigmaduxi + dsduxi)) / rtdenom |
1095 |
|
|
drtduyi = (dsduyi + rt * (drduyi - dsigmaduyi + dsduyi)) / rtdenom |
1096 |
|
|
drtduzi = (dsduzi + rt * (drduzi - dsigmaduzi + dsduzi)) / rtdenom |
1097 |
|
|
drtdxj = (dsdxj + rt * (drdxj - dsigmadxj + dsdxj)) / rtdenom |
1098 |
|
|
drtdyj = (dsdyj + rt * (drdyj - dsigmadyj + dsdyj)) / rtdenom |
1099 |
|
|
drtdzj = (dsdzj + rt * (drdzj - dsigmadzj + dsdzj)) / rtdenom |
1100 |
|
|
drtduxj = (dsduxj + rt * (drduxj - dsigmaduxj + dsduxj)) / rtdenom |
1101 |
|
|
drtduyj = (dsduyj + rt * (drduyj - dsigmaduyj + dsduyj)) / rtdenom |
1102 |
|
|
drtduzj = (dsduzj + rt * (drduzj - dsigmaduzj + dsduzj)) / rtdenom |
1103 |
|
|
|
1104 |
|
|
rt2 = rt*rt |
1105 |
|
|
rt3 = rt2*rt |
1106 |
|
|
rt5 = rt2*rt3 |
1107 |
|
|
rt6 = rt3*rt3 |
1108 |
|
|
rt11 = rt5*rt6 |
1109 |
|
|
rt12 = rt6*rt6 |
1110 |
|
|
rt126 = rt12 - rt6 |
1111 |
|
|
|
1112 |
chrisfen |
210 |
pot_temp = 4.0d0 * eps * rt126 |
1113 |
|
|
|
1114 |
|
|
vpair = vpair + pot_temp |
1115 |
gezelter |
115 |
if (do_pot) then |
1116 |
|
|
#ifdef IS_MPI |
1117 |
chrisfen |
210 |
pot_row(atom1) = pot_row(atom1) + 0.5d0*pot_temp*sw |
1118 |
|
|
pot_col(atom2) = pot_col(atom2) + 0.5d0*pot_temp*sw |
1119 |
gezelter |
115 |
#else |
1120 |
chrisfen |
210 |
pot = pot + pot_temp*sw |
1121 |
gezelter |
115 |
#endif |
1122 |
|
|
endif |
1123 |
chrisfen |
210 |
|
1124 |
|
|
!!$ write(*,*) 'drtdu, depsdu = ', drtduxi, depsduxi |
1125 |
gezelter |
115 |
|
1126 |
|
|
dvdxi = 24.0d0*eps*(2.0d0*rt11 - rt5)*drtdxi + 4.0d0*depsdxi*rt126 |
1127 |
|
|
dvdyi = 24.0d0*eps*(2.0d0*rt11 - rt5)*drtdyi + 4.0d0*depsdyi*rt126 |
1128 |
|
|
dvdzi = 24.0d0*eps*(2.0d0*rt11 - rt5)*drtdzi + 4.0d0*depsdzi*rt126 |
1129 |
|
|
dvduxi = 24.0d0*eps*(2.0d0*rt11 - rt5)*drtduxi + 4.0d0*depsduxi*rt126 |
1130 |
|
|
dvduyi = 24.0d0*eps*(2.0d0*rt11 - rt5)*drtduyi + 4.0d0*depsduyi*rt126 |
1131 |
|
|
dvduzi = 24.0d0*eps*(2.0d0*rt11 - rt5)*drtduzi + 4.0d0*depsduzi*rt126 |
1132 |
|
|
|
1133 |
|
|
dvdxj = 24.0d0*eps*(2.0d0*rt11 - rt5)*drtdxj + 4.0d0*depsdxj*rt126 |
1134 |
|
|
dvdyj = 24.0d0*eps*(2.0d0*rt11 - rt5)*drtdyj + 4.0d0*depsdyj*rt126 |
1135 |
|
|
dvdzj = 24.0d0*eps*(2.0d0*rt11 - rt5)*drtdzj + 4.0d0*depsdzj*rt126 |
1136 |
|
|
dvduxj = 24.0d0*eps*(2.0d0*rt11 - rt5)*drtduxj + 4.0d0*depsduxj*rt126 |
1137 |
|
|
dvduyj = 24.0d0*eps*(2.0d0*rt11 - rt5)*drtduyj + 4.0d0*depsduyj*rt126 |
1138 |
|
|
dvduzj = 24.0d0*eps*(2.0d0*rt11 - rt5)*drtduzj + 4.0d0*depsduzj*rt126 |
1139 |
|
|
|
1140 |
|
|
! do the torques first since they are easy: |
1141 |
|
|
! remember that these are still in the body fixed axes |
1142 |
|
|
|
1143 |
gezelter |
203 |
|
1144 |
chrisfen |
210 |
!!$ write(*,*) 'sw = ', sw |
1145 |
|
|
!!$ write(*,*) 'dvdu1 = ', dvduxi, dvduyi, dvduzi |
1146 |
|
|
!!$ write(*,*) 'dvdu2 = ', dvduxj, dvduyj, dvduzj |
1147 |
|
|
!!$ |
1148 |
|
|
txi = (dvduzi - dvduyi) * sw |
1149 |
|
|
tyi = (dvduxi - dvduzi) * sw |
1150 |
|
|
tzi = (dvduyi - dvduxi) * sw |
1151 |
gezelter |
115 |
|
1152 |
chrisfen |
210 |
txj = (dvduzj - dvduyj) * sw |
1153 |
|
|
tyj = (dvduxj - dvduzj) * sw |
1154 |
|
|
tzj = (dvduyj - dvduxj) * sw |
1155 |
gezelter |
115 |
|
1156 |
chrisfen |
210 |
!!$ txi = -dvduxi * sw |
1157 |
|
|
!!$ tyi = -dvduyi * sw |
1158 |
|
|
!!$ tzi = -dvduzi * sw |
1159 |
|
|
!!$ |
1160 |
|
|
!!$ txj = dvduxj * sw |
1161 |
|
|
!!$ tyj = dvduyj * sw |
1162 |
|
|
!!$ tzj = dvduzj * sw |
1163 |
|
|
|
1164 |
|
|
write(*,*) 't1 = ', txi, tyi, tzi |
1165 |
|
|
write(*,*) 't2 = ', txj, tyj, tzj |
1166 |
|
|
|
1167 |
gezelter |
115 |
! go back to lab frame using transpose of rotation matrix: |
1168 |
|
|
|
1169 |
|
|
#ifdef IS_MPI |
1170 |
|
|
t_Row(1,atom1) = t_Row(1,atom1) + a_Row(1,atom1)*txi + & |
1171 |
|
|
a_Row(4,atom1)*tyi + a_Row(7,atom1)*tzi |
1172 |
|
|
t_Row(2,atom1) = t_Row(2,atom1) + a_Row(2,atom1)*txi + & |
1173 |
|
|
a_Row(5,atom1)*tyi + a_Row(8,atom1)*tzi |
1174 |
|
|
t_Row(3,atom1) = t_Row(3,atom1) + a_Row(3,atom1)*txi + & |
1175 |
|
|
a_Row(6,atom1)*tyi + a_Row(9,atom1)*tzi |
1176 |
|
|
|
1177 |
|
|
t_Col(1,atom2) = t_Col(1,atom2) + a_Col(1,atom2)*txj + & |
1178 |
|
|
a_Col(4,atom2)*tyj + a_Col(7,atom2)*tzj |
1179 |
|
|
t_Col(2,atom2) = t_Col(2,atom2) + a_Col(2,atom2)*txj + & |
1180 |
|
|
a_Col(5,atom2)*tyj + a_Col(8,atom2)*tzj |
1181 |
|
|
t_Col(3,atom2) = t_Col(3,atom2) + a_Col(3,atom2)*txj + & |
1182 |
|
|
a_Col(6,atom2)*tyj + a_Col(9,atom2)*tzj |
1183 |
|
|
#else |
1184 |
|
|
t(1,atom1) = t(1,atom1) + a(1,atom1)*txi + a(4,atom1)*tyi + a(7,atom1)*tzi |
1185 |
|
|
t(2,atom1) = t(2,atom1) + a(2,atom1)*txi + a(5,atom1)*tyi + a(8,atom1)*tzi |
1186 |
|
|
t(3,atom1) = t(3,atom1) + a(3,atom1)*txi + a(6,atom1)*tyi + a(9,atom1)*tzi |
1187 |
|
|
|
1188 |
|
|
t(1,atom2) = t(1,atom2) + a(1,atom2)*txj + a(4,atom2)*tyj + a(7,atom2)*tzj |
1189 |
|
|
t(2,atom2) = t(2,atom2) + a(2,atom2)*txj + a(5,atom2)*tyj + a(8,atom2)*tzj |
1190 |
|
|
t(3,atom2) = t(3,atom2) + a(3,atom2)*txj + a(6,atom2)*tyj + a(9,atom2)*tzj |
1191 |
|
|
#endif |
1192 |
|
|
! Now, on to the forces: |
1193 |
|
|
|
1194 |
|
|
! first rotate the i terms back into the lab frame: |
1195 |
|
|
|
1196 |
|
|
fxi = dvdxi * sw |
1197 |
|
|
fyi = dvdyi * sw |
1198 |
|
|
fzi = dvdzi * sw |
1199 |
|
|
|
1200 |
|
|
fxj = dvdxj * sw |
1201 |
|
|
fyj = dvdyj * sw |
1202 |
|
|
fzj = dvdzj * sw |
1203 |
|
|
|
1204 |
|
|
#ifdef IS_MPI |
1205 |
|
|
fxii = a_Row(1,atom1)*fxi + a_Row(4,atom1)*fyi + a_Row(7,atom1)*fzi |
1206 |
|
|
fyii = a_Row(2,atom1)*fxi + a_Row(5,atom1)*fyi + a_Row(8,atom1)*fzi |
1207 |
|
|
fzii = a_Row(3,atom1)*fxi + a_Row(6,atom1)*fyi + a_Row(9,atom1)*fzi |
1208 |
|
|
|
1209 |
|
|
fxjj = a_Col(1,atom2)*fxj + a_Col(4,atom2)*fyj + a_Col(7,atom2)*fzj |
1210 |
|
|
fyjj = a_Col(2,atom2)*fxj + a_Col(5,atom2)*fyj + a_Col(8,atom2)*fzj |
1211 |
|
|
fzjj = a_Col(3,atom2)*fxj + a_Col(6,atom2)*fyj + a_Col(9,atom2)*fzj |
1212 |
|
|
#else |
1213 |
|
|
fxii = a(1,atom1)*fxi + a(4,atom1)*fyi + a(7,atom1)*fzi |
1214 |
|
|
fyii = a(2,atom1)*fxi + a(5,atom1)*fyi + a(8,atom1)*fzi |
1215 |
|
|
fzii = a(3,atom1)*fxi + a(6,atom1)*fyi + a(9,atom1)*fzi |
1216 |
|
|
|
1217 |
|
|
fxjj = a(1,atom2)*fxj + a(4,atom2)*fyj + a(7,atom2)*fzj |
1218 |
|
|
fyjj = a(2,atom2)*fxj + a(5,atom2)*fyj + a(8,atom2)*fzj |
1219 |
|
|
fzjj = a(3,atom2)*fxj + a(6,atom2)*fyj + a(9,atom2)*fzj |
1220 |
|
|
#endif |
1221 |
|
|
|
1222 |
|
|
fxij = -fxii |
1223 |
|
|
fyij = -fyii |
1224 |
|
|
fzij = -fzii |
1225 |
|
|
|
1226 |
|
|
fxji = -fxjj |
1227 |
|
|
fyji = -fyjj |
1228 |
|
|
fzji = -fzjj |
1229 |
|
|
|
1230 |
chrisfen |
210 |
fxradial = 0.5_dp * (fxii + fxji) |
1231 |
|
|
fyradial = 0.5_dp * (fyii + fyji) |
1232 |
|
|
fzradial = 0.5_dp * (fzii + fzji) |
1233 |
gezelter |
115 |
|
1234 |
|
|
#ifdef IS_MPI |
1235 |
|
|
f_Row(1,atom1) = f_Row(1,atom1) + fxradial |
1236 |
|
|
f_Row(2,atom1) = f_Row(2,atom1) + fyradial |
1237 |
|
|
f_Row(3,atom1) = f_Row(3,atom1) + fzradial |
1238 |
|
|
|
1239 |
|
|
f_Col(1,atom2) = f_Col(1,atom2) - fxradial |
1240 |
|
|
f_Col(2,atom2) = f_Col(2,atom2) - fyradial |
1241 |
|
|
f_Col(3,atom2) = f_Col(3,atom2) - fzradial |
1242 |
|
|
#else |
1243 |
|
|
f(1,atom1) = f(1,atom1) + fxradial |
1244 |
|
|
f(2,atom1) = f(2,atom1) + fyradial |
1245 |
|
|
f(3,atom1) = f(3,atom1) + fzradial |
1246 |
|
|
|
1247 |
|
|
f(1,atom2) = f(1,atom2) - fxradial |
1248 |
|
|
f(2,atom2) = f(2,atom2) - fyradial |
1249 |
|
|
f(3,atom2) = f(3,atom2) - fzradial |
1250 |
|
|
#endif |
1251 |
|
|
|
1252 |
|
|
#ifdef IS_MPI |
1253 |
|
|
id1 = AtomRowToGlobal(atom1) |
1254 |
|
|
id2 = AtomColToGlobal(atom2) |
1255 |
|
|
#else |
1256 |
|
|
id1 = atom1 |
1257 |
|
|
id2 = atom2 |
1258 |
|
|
#endif |
1259 |
|
|
|
1260 |
|
|
if (molMembershipList(id1) .ne. molMembershipList(id2)) then |
1261 |
|
|
|
1262 |
|
|
fpair(1) = fpair(1) + fxradial |
1263 |
|
|
fpair(2) = fpair(2) + fyradial |
1264 |
|
|
fpair(3) = fpair(3) + fzradial |
1265 |
|
|
|
1266 |
|
|
endif |
1267 |
gezelter |
203 |
|
1268 |
gezelter |
115 |
end subroutine do_shape_pair |
1269 |
|
|
|
1270 |
chrisfen |
195 |
SUBROUTINE Associated_Legendre(x, l, m, lmax, plm, dlm) |
1271 |
|
|
|
1272 |
gezelter |
115 |
! Purpose: Compute the associated Legendre functions |
1273 |
|
|
! Plm(x) and their derivatives Plm'(x) |
1274 |
|
|
! Input : x --- Argument of Plm(x) |
1275 |
|
|
! l --- Order of Plm(x), l = 0,1,2,...,n |
1276 |
|
|
! m --- Degree of Plm(x), m = 0,1,2,...,N |
1277 |
|
|
! lmax --- Physical dimension of PLM and DLM |
1278 |
|
|
! Output: PLM(l,m) --- Plm(x) |
1279 |
|
|
! DLM(l,m) --- Plm'(x) |
1280 |
|
|
! |
1281 |
|
|
! adapted from the routines in |
1282 |
|
|
! COMPUTATION OF SPECIAL FUNCTIONS by Shanjie Zhang and Jianming Jin |
1283 |
|
|
! ISBN 0-471-11963-6 |
1284 |
|
|
! |
1285 |
|
|
! The original Fortran77 codes can be found here: |
1286 |
|
|
! http://iris-lee3.ece.uiuc.edu/~jjin/routines/routines.html |
1287 |
|
|
|
1288 |
chrisfen |
195 |
real (kind=dp), intent(in) :: x |
1289 |
gezelter |
115 |
integer, intent(in) :: l, m, lmax |
1290 |
chrisfen |
195 |
real (kind=dp), dimension(0:lmax,0:m), intent(out) :: PLM, DLM |
1291 |
gezelter |
115 |
integer :: i, j, ls |
1292 |
chrisfen |
195 |
real (kind=dp) :: xq, xs |
1293 |
gezelter |
115 |
|
1294 |
|
|
! zero out both arrays: |
1295 |
|
|
DO I = 0, m |
1296 |
|
|
DO J = 0, l |
1297 |
chrisfen |
195 |
PLM(J,I) = 0.0_dp |
1298 |
|
|
DLM(J,I) = 0.0_dp |
1299 |
gezelter |
115 |
end DO |
1300 |
|
|
end DO |
1301 |
|
|
|
1302 |
|
|
! start with 0,0: |
1303 |
|
|
PLM(0,0) = 1.0D0 |
1304 |
|
|
|
1305 |
|
|
! x = +/- 1 functions are easy: |
1306 |
|
|
IF (abs(X).EQ.1.0D0) THEN |
1307 |
|
|
DO I = 1, m |
1308 |
|
|
PLM(0, I) = X**I |
1309 |
|
|
DLM(0, I) = 0.5D0*I*(I+1.0D0)*X**(I+1) |
1310 |
|
|
end DO |
1311 |
|
|
DO J = 1, m |
1312 |
|
|
DO I = 1, l |
1313 |
|
|
IF (I.EQ.1) THEN |
1314 |
|
|
DLM(I, J) = 1.0D+300 |
1315 |
|
|
ELSE IF (I.EQ.2) THEN |
1316 |
|
|
DLM(I, J) = -0.25D0*(J+2)*(J+1)*J*(J-1)*X**(J+1) |
1317 |
|
|
ENDIF |
1318 |
|
|
end DO |
1319 |
|
|
end DO |
1320 |
|
|
RETURN |
1321 |
|
|
ENDIF |
1322 |
|
|
|
1323 |
|
|
LS = 1 |
1324 |
|
|
IF (abs(X).GT.1.0D0) LS = -1 |
1325 |
|
|
XQ = sqrt(LS*(1.0D0-X*X)) |
1326 |
|
|
XS = LS*(1.0D0-X*X) |
1327 |
|
|
|
1328 |
|
|
DO I = 1, l |
1329 |
|
|
PLM(I, I) = -LS*(2.0D0*I-1.0D0)*XQ*PLM(I-1, I-1) |
1330 |
|
|
enddo |
1331 |
chrisfen |
195 |
|
1332 |
gezelter |
115 |
DO I = 0, l |
1333 |
|
|
PLM(I, I+1)=(2.0D0*I+1.0D0)*X*PLM(I, I) |
1334 |
|
|
enddo |
1335 |
chrisfen |
195 |
|
1336 |
gezelter |
115 |
DO I = 0, l |
1337 |
|
|
DO J = I+2, m |
1338 |
|
|
PLM(I, J)=((2.0D0*J-1.0D0)*X*PLM(I,J-1) - & |
1339 |
|
|
(I+J-1.0D0)*PLM(I,J-2))/(J-I) |
1340 |
|
|
end DO |
1341 |
|
|
end DO |
1342 |
chrisfen |
195 |
|
1343 |
gezelter |
115 |
DLM(0, 0)=0.0D0 |
1344 |
|
|
DO J = 1, m |
1345 |
|
|
DLM(0, J)=LS*J*(PLM(0,J-1)-X*PLM(0,J))/XS |
1346 |
|
|
end DO |
1347 |
chrisfen |
195 |
|
1348 |
gezelter |
115 |
DO I = 1, l |
1349 |
|
|
DO J = I, m |
1350 |
|
|
DLM(I,J) = LS*I*X*PLM(I, J)/XS + (J+I)*(J-I+1.0D0)/XQ*PLM(I-1, J) |
1351 |
|
|
end DO |
1352 |
|
|
end DO |
1353 |
chrisfen |
195 |
|
1354 |
gezelter |
115 |
RETURN |
1355 |
|
|
END SUBROUTINE Associated_Legendre |
1356 |
|
|
|
1357 |
|
|
|
1358 |
chrisfen |
195 |
subroutine Orthogonal_Polynomial(x, m, mmax, function_type, pl, dpl) |
1359 |
gezelter |
115 |
|
1360 |
|
|
! Purpose: Compute orthogonal polynomials: Tn(x) or Un(x), |
1361 |
|
|
! or Ln(x) or Hn(x), and their derivatives |
1362 |
|
|
! Input : function_type --- Function code |
1363 |
|
|
! =1 for Chebyshev polynomial Tn(x) |
1364 |
|
|
! =2 for Chebyshev polynomial Un(x) |
1365 |
|
|
! =3 for Laguerre polynomial Ln(x) |
1366 |
|
|
! =4 for Hermite polynomial Hn(x) |
1367 |
|
|
! n --- Order of orthogonal polynomials |
1368 |
|
|
! x --- Argument of orthogonal polynomials |
1369 |
|
|
! Output: PL(n) --- Tn(x) or Un(x) or Ln(x) or Hn(x) |
1370 |
|
|
! DPL(n)--- Tn'(x) or Un'(x) or Ln'(x) or Hn'(x) |
1371 |
|
|
! |
1372 |
|
|
! adapted from the routines in |
1373 |
|
|
! COMPUTATION OF SPECIAL FUNCTIONS by Shanjie Zhang and Jianming Jin |
1374 |
|
|
! ISBN 0-471-11963-6 |
1375 |
|
|
! |
1376 |
|
|
! The original Fortran77 codes can be found here: |
1377 |
|
|
! http://iris-lee3.ece.uiuc.edu/~jjin/routines/routines.html |
1378 |
|
|
|
1379 |
|
|
real(kind=8), intent(in) :: x |
1380 |
chrisfen |
195 |
integer, intent(in):: m, mmax |
1381 |
gezelter |
115 |
integer, intent(in):: function_type |
1382 |
chrisfen |
195 |
real(kind=8), dimension(0:mmax), intent(inout) :: pl, dpl |
1383 |
gezelter |
115 |
|
1384 |
|
|
real(kind=8) :: a, b, c, y0, y1, dy0, dy1, yn, dyn |
1385 |
|
|
integer :: k |
1386 |
|
|
|
1387 |
|
|
A = 2.0D0 |
1388 |
|
|
B = 0.0D0 |
1389 |
|
|
C = 1.0D0 |
1390 |
|
|
Y0 = 1.0D0 |
1391 |
|
|
Y1 = 2.0D0*X |
1392 |
|
|
DY0 = 0.0D0 |
1393 |
|
|
DY1 = 2.0D0 |
1394 |
|
|
PL(0) = 1.0D0 |
1395 |
|
|
PL(1) = 2.0D0*X |
1396 |
|
|
DPL(0) = 0.0D0 |
1397 |
|
|
DPL(1) = 2.0D0 |
1398 |
|
|
IF (function_type.EQ.CHEBYSHEV_TN) THEN |
1399 |
|
|
Y1 = X |
1400 |
|
|
DY1 = 1.0D0 |
1401 |
|
|
PL(1) = X |
1402 |
|
|
DPL(1) = 1.0D0 |
1403 |
|
|
ELSE IF (function_type.EQ.LAGUERRE) THEN |
1404 |
|
|
Y1 = 1.0D0-X |
1405 |
|
|
DY1 = -1.0D0 |
1406 |
|
|
PL(1) = 1.0D0-X |
1407 |
|
|
DPL(1) = -1.0D0 |
1408 |
|
|
ENDIF |
1409 |
|
|
DO K = 2, m |
1410 |
|
|
IF (function_type.EQ.LAGUERRE) THEN |
1411 |
|
|
A = -1.0D0/K |
1412 |
|
|
B = 2.0D0+A |
1413 |
|
|
C = 1.0D0+A |
1414 |
|
|
ELSE IF (function_type.EQ.HERMITE) THEN |
1415 |
|
|
C = 2.0D0*(K-1.0D0) |
1416 |
|
|
ENDIF |
1417 |
|
|
YN = (A*X+B)*Y1-C*Y0 |
1418 |
|
|
DYN = A*Y1+(A*X+B)*DY1-C*DY0 |
1419 |
|
|
PL(K) = YN |
1420 |
|
|
DPL(K) = DYN |
1421 |
|
|
Y0 = Y1 |
1422 |
|
|
Y1 = YN |
1423 |
|
|
DY0 = DY1 |
1424 |
|
|
DY1 = DYN |
1425 |
|
|
end DO |
1426 |
chrisfen |
198 |
|
1427 |
|
|
|
1428 |
gezelter |
115 |
RETURN |
1429 |
|
|
|
1430 |
|
|
end subroutine Orthogonal_Polynomial |
1431 |
|
|
|
1432 |
chuckv |
491 |
subroutine deallocateShapes(this) |
1433 |
|
|
type(Shape), pointer :: this |
1434 |
|
|
|
1435 |
|
|
if (associated( this%ContactFuncLValue)) then |
1436 |
|
|
deallocate(this%ContactFuncLValue) |
1437 |
|
|
this%ContactFuncLValue => null() |
1438 |
|
|
end if |
1439 |
|
|
|
1440 |
|
|
if (associated( this%ContactFuncMValue)) then |
1441 |
|
|
deallocate( this%ContactFuncMValue) |
1442 |
|
|
this%ContactFuncMValue => null() |
1443 |
|
|
end if |
1444 |
|
|
if (associated( this%ContactFunctionType)) then |
1445 |
|
|
deallocate(this%ContactFunctionType) |
1446 |
|
|
this%ContactFunctionType => null() |
1447 |
|
|
end if |
1448 |
|
|
|
1449 |
|
|
if (associated( this%ContactFuncCoefficient)) then |
1450 |
|
|
deallocate(this%ContactFuncCoefficient) |
1451 |
|
|
this%ContactFuncCoefficient => null() |
1452 |
|
|
end if |
1453 |
|
|
|
1454 |
|
|
if (associated( this%RangeFuncLValue)) then |
1455 |
|
|
deallocate(this%RangeFuncLValue) |
1456 |
|
|
this%RangeFuncLValue => null() |
1457 |
|
|
end if |
1458 |
|
|
if (associated( this%RangeFuncMValue)) then |
1459 |
|
|
deallocate( this%RangeFuncMValue) |
1460 |
|
|
this%RangeFuncMValue => null() |
1461 |
|
|
end if |
1462 |
|
|
|
1463 |
|
|
if (associated( this%RangeFunctionType)) then |
1464 |
|
|
deallocate( this%RangeFunctionType) |
1465 |
|
|
this%RangeFunctionType => null() |
1466 |
|
|
end if |
1467 |
|
|
if (associated( this%RangeFuncCoefficient)) then |
1468 |
|
|
deallocate(this%RangeFuncCoefficient) |
1469 |
|
|
this%RangeFuncCoefficient => null() |
1470 |
|
|
end if |
1471 |
|
|
|
1472 |
|
|
if (associated( this%StrengthFuncLValue)) then |
1473 |
|
|
deallocate(this%StrengthFuncLValue) |
1474 |
|
|
this%StrengthFuncLValue => null() |
1475 |
|
|
end if |
1476 |
|
|
|
1477 |
|
|
if (associated( this%StrengthFuncMValue )) then |
1478 |
|
|
deallocate(this%StrengthFuncMValue) |
1479 |
|
|
this%StrengthFuncMValue => null() |
1480 |
|
|
end if |
1481 |
|
|
|
1482 |
|
|
if(associated( this%StrengthFunctionType)) then |
1483 |
|
|
deallocate(this%StrengthFunctionType) |
1484 |
|
|
this%StrengthFunctionType => null() |
1485 |
|
|
end if |
1486 |
|
|
if (associated( this%StrengthFuncCoefficient )) then |
1487 |
|
|
deallocate(this%StrengthFuncCoefficient) |
1488 |
|
|
this%StrengthFuncCoefficient => null() |
1489 |
|
|
end if |
1490 |
|
|
end subroutine deallocateShapes |
1491 |
|
|
|
1492 |
|
|
subroutine destroyShapeTypes |
1493 |
|
|
integer :: i |
1494 |
|
|
type(Shape), pointer :: thisShape |
1495 |
|
|
|
1496 |
|
|
! First walk through and kill the shape |
1497 |
|
|
do i = 1,ShapeMap%n_shapes |
1498 |
|
|
thisShape => ShapeMap%Shapes(i) |
1499 |
|
|
call deallocateShapes(thisShape) |
1500 |
|
|
end do |
1501 |
|
|
|
1502 |
|
|
! set shape map to starting values |
1503 |
|
|
ShapeMap%n_shapes = 0 |
1504 |
|
|
ShapeMap%currentShape = 0 |
1505 |
|
|
|
1506 |
|
|
if (associated(ShapeMap%Shapes)) then |
1507 |
|
|
deallocate(ShapeMap%Shapes) |
1508 |
|
|
ShapeMap%Shapes => null() |
1509 |
|
|
end if |
1510 |
|
|
|
1511 |
|
|
if (associated(ShapeMap%atidToShape)) then |
1512 |
|
|
deallocate(ShapeMap%atidToShape) |
1513 |
|
|
ShapeMap%atidToShape => null() |
1514 |
|
|
end if |
1515 |
|
|
|
1516 |
|
|
|
1517 |
|
|
end subroutine destroyShapeTypes |
1518 |
|
|
|
1519 |
|
|
|
1520 |
gezelter |
115 |
end module shapes |