| 1 |
!! |
| 2 |
!! Copyright (c) 2006 The University of Notre Dame. All Rights Reserved. |
| 3 |
!! |
| 4 |
!! The University of Notre Dame grants you ("Licensee") a |
| 5 |
!! non-exclusive, royalty free, license to use, modify and |
| 6 |
!! redistribute this software in source and binary code form, provided |
| 7 |
!! that the following conditions are met: |
| 8 |
!! |
| 9 |
!! 1. Acknowledgement of the program authors must be made in any |
| 10 |
!! publication of scientific results based in part on use of the |
| 11 |
!! program. An acceptable form of acknowledgement is citation of |
| 12 |
!! the article in which the program was described (Matthew |
| 13 |
!! A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
| 14 |
!! J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
| 15 |
!! Parallel Simulation Engine for Molecular Dynamics," |
| 16 |
!! J. Comput. Chem. 26, pp. 252-271 (2005)) |
| 17 |
!! |
| 18 |
!! 2. Redistributions of source code must retain the above copyright |
| 19 |
!! notice, this list of conditions and the following disclaimer. |
| 20 |
!! |
| 21 |
!! 3. Redistributions in binary form must reproduce the above copyright |
| 22 |
!! notice, this list of conditions and the following disclaimer in the |
| 23 |
!! documentation and/or other materials provided with the |
| 24 |
!! distribution. |
| 25 |
!! |
| 26 |
!! This software is provided "AS IS," without a warranty of any |
| 27 |
!! kind. All express or implied conditions, representations and |
| 28 |
!! warranties, including any implied warranty of merchantability, |
| 29 |
!! fitness for a particular purpose or non-infringement, are hereby |
| 30 |
!! excluded. The University of Notre Dame and its licensors shall not |
| 31 |
!! be liable for any damages suffered by licensee as a result of |
| 32 |
!! using, modifying or distributing the software or its |
| 33 |
!! derivatives. In no event will the University of Notre Dame or its |
| 34 |
!! licensors be liable for any lost revenue, profit or data, or for |
| 35 |
!! direct, indirect, special, consequential, incidental or punitive |
| 36 |
!! damages, however caused and regardless of the theory of liability, |
| 37 |
!! arising out of the use of or inability to use software, even if the |
| 38 |
!! University of Notre Dame has been advised of the possibility of |
| 39 |
!! such damages. |
| 40 |
!! |
| 41 |
!! |
| 42 |
!! interpolation.F90 |
| 43 |
!! |
| 44 |
!! Created by Charles F. Vardeman II on 03 Apr 2006. |
| 45 |
!! |
| 46 |
!! PURPOSE: Generic Spline interplelation routines. These routines assume that we are on a uniform grid for |
| 47 |
!! precomputation of spline parameters. |
| 48 |
!! |
| 49 |
!! @author Charles F. Vardeman II |
| 50 |
!! @version $Id: interpolation.F90,v 1.1 2006-04-12 21:15:17 chuckv Exp $ |
| 51 |
|
| 52 |
|
| 53 |
module INTERPOLATION |
| 54 |
use definitions |
| 55 |
use status |
| 56 |
implicit none |
| 57 |
PRIVATE |
| 58 |
|
| 59 |
character(len = statusMsgSize) :: errMSG |
| 60 |
|
| 61 |
type, public :: splineType |
| 62 |
private |
| 63 |
integer :: npoints = 0 |
| 64 |
real(kind=dp) :: delta_x |
| 65 |
real(kind=dp) :: range |
| 66 |
real(kind=dp) :: range_inv |
| 67 |
real (kind=dp), pointer,dimension(:) :: xa => null() |
| 68 |
real (kind=dp), pointer,dimension(:) :: ya => null() |
| 69 |
real (kind=dp), pointer,dimension(:) :: yppa => null() |
| 70 |
end type splineType |
| 71 |
|
| 72 |
type, public :: multiSplineType |
| 73 |
private |
| 74 |
integer :: npoints = 0 |
| 75 |
integer :: nfuncs = 0 |
| 76 |
|
| 77 |
integer :: npoints = 0 |
| 78 |
real(kind=dp) :: delta_x |
| 79 |
real(kind=dp) :: range |
| 80 |
real(kind=dp) :: range_inv |
| 81 |
real (kind=dp), pointer,dimension(:) :: xa => null() |
| 82 |
real (kind=dp), pointer,dimension(:,:) :: ya => null() |
| 83 |
real (kind=dp), pointer,dimension(:,:) :: yppa => null() |
| 84 |
end type splineType |
| 85 |
|
| 86 |
|
| 87 |
interface splineLookup |
| 88 |
module procedure multiSplint |
| 89 |
module procedure splintd |
| 90 |
module procedure splintd1 |
| 91 |
module procedure splintd2 |
| 92 |
end interface |
| 93 |
|
| 94 |
public :: splint |
| 95 |
public :: newSpline |
| 96 |
public :: newMultiSpline |
| 97 |
public :: deleteSpline |
| 98 |
public :: deleteMultiSpline |
| 99 |
|
| 100 |
|
| 101 |
contains |
| 102 |
|
| 103 |
!! mySpline is pointer to spline type, nx number of data points, |
| 104 |
!! xa tabulated x values and ya respective values for xa, yp1 |
| 105 |
!! is value for derivative at first point and ypn is value |
| 106 |
!! for derivative at point n. |
| 107 |
subroutine newSpline(thisSpline,nx, xa, ya, yp1, ypn, boundary) |
| 108 |
|
| 109 |
! yp1 and ypn are the first derivatives of y at the two endpoints |
| 110 |
! if boundary is 'L' the lower derivative is used |
| 111 |
! if boundary is 'U' the upper derivative is used |
| 112 |
! if boundary is 'B' then both derivatives are used |
| 113 |
! if boundary is anything else, then both derivatives are assumed to be 0 |
| 114 |
|
| 115 |
|
| 116 |
type (splineType), intent(inout) :: thisSpline |
| 117 |
|
| 118 |
|
| 119 |
real( kind = DP ), pointer, dimension(:) :: xa |
| 120 |
real( kind = DP ), pointer, dimension(:) :: ya |
| 121 |
real( kind = DP ), dimension(size(xa)) :: u |
| 122 |
real( kind = DP ) :: yp1,ypn,un,qn,sig,p |
| 123 |
character(len=*) :: boundary |
| 124 |
integer :: nx, i, k, max_array_size |
| 125 |
integer :: alloc_error |
| 126 |
|
| 127 |
alloc_error = 0 |
| 128 |
|
| 129 |
if (thisSpline%npoints/=0) then |
| 130 |
call handleWarning("INTERPOLATION:newSpline",& |
| 131 |
"Type has already been created") |
| 132 |
call deleteSpline(thisSpline) |
| 133 |
end if |
| 134 |
|
| 135 |
|
| 136 |
! make sure the sizes match |
| 137 |
if ((nx /= size(xa)) .or. (nx /= size(ya))) then |
| 138 |
call handleWarning("INTERPOLATION:newSpline","Array size mismatch") |
| 139 |
end if |
| 140 |
|
| 141 |
|
| 142 |
thisSpline%npoints = nx |
| 143 |
allocate(thisSpline%yppa(nx),stat=alloc_error) |
| 144 |
if(alloc_error .ne. 0) call handleWarning("INTERPOLATION:newSpline",& |
| 145 |
"Error in allocating storage for yppa") |
| 146 |
|
| 147 |
thisSpline%xa => xa |
| 148 |
thisSpline%ya => ya |
| 149 |
|
| 150 |
|
| 151 |
|
| 152 |
|
| 153 |
if ((boundary.eq.'l').or.(boundary.eq.'L').or. & |
| 154 |
(boundary.eq.'b').or.(boundary.eq.'B')) then |
| 155 |
thisSpline%yppa(1) = -0.5E0_DP |
| 156 |
u(1) = (3.0E0_DP/(xa(2)-xa(1)))*((ya(2)-& |
| 157 |
ya(1))/(xa(2)-xa(1))-yp1) |
| 158 |
else |
| 159 |
thisSpline%yppa(1) = 0.0E0_DP |
| 160 |
u(1) = 0.0E0_DP |
| 161 |
endif |
| 162 |
|
| 163 |
do i = 2, nx - 1 |
| 164 |
sig = (thisSpline%xa(i) - thisSpline%xa(i-1)) / (thisSpline%xa(i+1) - thisSpline%xa(i-1)) |
| 165 |
p = sig * thisSpline%yppa(i-1) + 2.0E0_DP |
| 166 |
thisSpline%yppa(i) = (sig - 1.0E0_DP) / p |
| 167 |
u(i) = (6.0E0_DP*((thisSpline%ya(i+1)-thisSpline%ya(i))/(thisSpline%xa(i+1)-thisSpline%xa(i)) - & |
| 168 |
(thisSpline%ya(i)-thisSpline%ya(i-1))/(thisSpline%xa(i)-thisSpline%xa(i-1)))/ & |
| 169 |
(thisSpline%xa(i+1)-thisSpline%xa(i-1)) - sig * u(i-1))/p |
| 170 |
enddo |
| 171 |
|
| 172 |
if ((boundary.eq.'u').or.(boundary.eq.'U').or. & |
| 173 |
(boundary.eq.'b').or.(boundary.eq.'B')) then |
| 174 |
qn = 0.5E0_DP |
| 175 |
un = (3.0E0_DP/(thisSpline%xa(nx)-thisSpline%xa(nx-1)))* & |
| 176 |
(ypn-(thisSpline%ya(nx)-thisSpline%ya(nx-1))/(thisSpline%xa(nx)-thisSpline%xa(nx-1))) |
| 177 |
else |
| 178 |
qn = 0.0E0_DP |
| 179 |
un = 0.0E0_DP |
| 180 |
endif |
| 181 |
|
| 182 |
thisSpline%yppa(nx)=(un-qn*u(nx-1))/(qn*thisSpline%yppa(nx-1)+1.0E0_DP) |
| 183 |
|
| 184 |
do k = nx-1, 1, -1 |
| 185 |
thisSpline%yppa(k)=thisSpline%yppa(k)*thisSpline%yppa(k+1)+u(k) |
| 186 |
enddo |
| 187 |
|
| 188 |
end subroutine newSpline |
| 189 |
|
| 190 |
subroutine deleteSpline(thisSpline) |
| 191 |
type(splineType) :: thisSpline |
| 192 |
|
| 193 |
|
| 194 |
|
| 195 |
if(associated(thisSpline%xa)) then |
| 196 |
deallocate(thisSpline%xa) |
| 197 |
thisSpline%xa => null() |
| 198 |
end if |
| 199 |
if(associated(thisSpline%ya)) then |
| 200 |
deallocate(thisSpline%ya) |
| 201 |
thisSpline%ya => null() |
| 202 |
end if |
| 203 |
if(associated(thisSpline%yppa)) then |
| 204 |
deallocate(thisSpline%yppa) |
| 205 |
thisSpline%yppa => null() |
| 206 |
end if |
| 207 |
|
| 208 |
thisSpline%npoints=0 |
| 209 |
|
| 210 |
end subroutine deleteSpline |
| 211 |
|
| 212 |
subroutine splintd2(thisSpline, x, y, dy, d2y) |
| 213 |
type(splineType) :: thisSpline |
| 214 |
real( kind = DP ), intent(in) :: x |
| 215 |
real( kind = DP ), intent(out) :: y,dy,d2y |
| 216 |
|
| 217 |
|
| 218 |
real( kind = DP ) :: del, h, a, b, c, d |
| 219 |
integer :: j |
| 220 |
|
| 221 |
! this spline code assumes that the x points are equally spaced |
| 222 |
! do not attempt to use this code if they are not. |
| 223 |
|
| 224 |
|
| 225 |
! find the closest point with a value below our own: |
| 226 |
j = FLOOR(real((thisSpline%npoints-1),kind=dp) * & |
| 227 |
(x - thisSpline%xa(1)) / (thisSpline%xa(thisSpline%npoints) - thisSpline%xa(1))) + 1 |
| 228 |
|
| 229 |
! check to make sure we're inside the spline range: |
| 230 |
if ((j.gt.thisSpline%npoints).or.(j.lt.1)) then |
| 231 |
write(errMSG,*) "EAM_splint: x is outside bounds of spline: ",x,j |
| 232 |
call handleError("INTERPOLATION::SPLINT2d",errMSG) |
| 233 |
endif |
| 234 |
! check to make sure we haven't screwed up the calculation of j: |
| 235 |
if ((x.lt.thisSpline%xa(j)).or.(x.gt.thisSpline%xa(j+1))) then |
| 236 |
if (j.ne.thisSpline%npoints) then |
| 237 |
write(errMSG,*) "EAM_splint:",x," x is outside bounding range" |
| 238 |
call handleError("INTERPOLATION::SPLINT2d",errMSG) |
| 239 |
endif |
| 240 |
endif |
| 241 |
|
| 242 |
del = thisSpline%xa(j+1) - x |
| 243 |
h = thisSpline%xa(j+1) - thisSpline%xa(j) |
| 244 |
|
| 245 |
a = del / h |
| 246 |
b = 1.0E0_DP - a |
| 247 |
c = a*(a*a - 1.0E0_DP)*h*h/6.0E0_DP |
| 248 |
d = b*(b*b - 1.0E0_DP)*h*h/6.0E0_DP |
| 249 |
|
| 250 |
y = a*thisSpline%ya(j) + b*thisSpline%ya(j+1) + c*thisSpline%yppa(j) + d*thisSpline%yppa(j+1) |
| 251 |
|
| 252 |
dy = (thisSpline%ya(j+1)-thisSpline%ya(j))/h & |
| 253 |
- (3.0E0_DP*a*a - 1.0E0_DP)*h*thisSpline%yppa(j)/6.0E0_DP & |
| 254 |
+ (3.0E0_DP*b*b - 1.0E0_DP)*h*thisSpline%yppa(j+1)/6.0E0_DP |
| 255 |
|
| 256 |
|
| 257 |
d2y = a*thisSpline%yppa(j) + b*thisSpline%yppa(j+1) |
| 258 |
|
| 259 |
|
| 260 |
end subroutine splintd2 |
| 261 |
subroutine splintd1(thisSpline, x, y, dy) |
| 262 |
type(splineType) :: thisSpline |
| 263 |
real( kind = DP ), intent(in) :: x |
| 264 |
real( kind = DP ), intent(out) :: y,dy |
| 265 |
|
| 266 |
|
| 267 |
real( kind = DP ) :: del, h, a, b, c, d |
| 268 |
integer :: j |
| 269 |
|
| 270 |
! this spline code assumes that the x points are equally spaced |
| 271 |
! do not attempt to use this code if they are not. |
| 272 |
|
| 273 |
|
| 274 |
! find the closest point with a value below our own: |
| 275 |
j = FLOOR(real((thisSpline%npoints-1),kind=dp) *& |
| 276 |
(x - thisSpline%xa(1)) / (thisSpline%xa(thisSpline%npoints) - thisSpline%xa(1))) + 1 |
| 277 |
|
| 278 |
! check to make sure we're inside the spline range: |
| 279 |
if ((j.gt.thisSpline%npoints).or.(j.lt.1)) then |
| 280 |
write(errMSG,*) "EAM_splint: x is outside bounds of spline: ",x,j |
| 281 |
call handleError("INTERPOLATION::SPLINT2d",errMSG) |
| 282 |
endif |
| 283 |
! check to make sure we haven't screwed up the calculation of j: |
| 284 |
if ((x.lt.thisSpline%xa(j)).or.(x.gt.thisSpline%xa(j+1))) then |
| 285 |
if (j.ne.thisSpline%npoints) then |
| 286 |
write(errMSG,*) "EAM_splint:",x," x is outside bounding range" |
| 287 |
call handleError("INTERPOLATION::SPLINT2d",errMSG) |
| 288 |
endif |
| 289 |
endif |
| 290 |
|
| 291 |
del = thisSpline%xa(j+1) - x |
| 292 |
h = thisSpline%xa(j+1) - thisSpline%xa(j) |
| 293 |
|
| 294 |
a = del / h |
| 295 |
b = 1.0E0_DP - a |
| 296 |
c = a*(a*a - 1.0E0_DP)*h*h/6.0E0_DP |
| 297 |
d = b*(b*b - 1.0E0_DP)*h*h/6.0E0_DP |
| 298 |
|
| 299 |
y = a*thisSpline%ya(j) + b*thisSpline%ya(j+1) + c*thisSpline%yppa(j) + d*thisSpline%yppa(j+1) |
| 300 |
|
| 301 |
dy = (thisSpline%ya(j+1)-thisSpline%ya(j))/h & |
| 302 |
- (3.0E0_DP*a*a - 1.0E0_DP)*h*thisSpline%yppa(j)/6.0E0_DP & |
| 303 |
+ (3.0E0_DP*b*b - 1.0E0_DP)*h*thisSpline%yppa(j+1)/6.0E0_DP |
| 304 |
|
| 305 |
|
| 306 |
|
| 307 |
|
| 308 |
|
| 309 |
end subroutine splintd1 |
| 310 |
subroutine splintd(thisSpline, x, y) |
| 311 |
type(splineType) :: thisSpline |
| 312 |
real( kind = DP ), intent(in) :: x |
| 313 |
real( kind = DP ), intent(out) :: y |
| 314 |
|
| 315 |
|
| 316 |
real( kind = DP ) :: del, h, a, b, c, d |
| 317 |
integer :: j |
| 318 |
|
| 319 |
! this spline code assumes that the x points are equally spaced |
| 320 |
! do not attempt to use this code if they are not. |
| 321 |
|
| 322 |
|
| 323 |
! find the closest point with a value below our own: |
| 324 |
j = FLOOR(real((thisSpline%npoints-1),kind=dp) * & |
| 325 |
(x - thisSpline%xa(1)) / (thisSpline%xa(thisSpline%npoints) - thisSpline%xa(1))) + 1 |
| 326 |
|
| 327 |
! check to make sure we're inside the spline range: |
| 328 |
if ((j.gt.thisSpline%npoints).or.(j.lt.1)) then |
| 329 |
write(errMSG,*) "EAM_splint: x is outside bounds of spline: ",x,j |
| 330 |
call handleError("INTERPOLATION::SPLINT2d",errMSG) |
| 331 |
endif |
| 332 |
! check to make sure we haven't screwed up the calculation of j: |
| 333 |
if ((x.lt.thisSpline%xa(j)).or.(x.gt.thisSpline%xa(j+1))) then |
| 334 |
if (j.ne.thisSpline%npoints) then |
| 335 |
write(errMSG,*) "EAM_splint:",x," x is outside bounding range" |
| 336 |
call handleError("INTERPOLATION::SPLINT2d",errMSG) |
| 337 |
endif |
| 338 |
endif |
| 339 |
|
| 340 |
del = thisSpline%xa(j+1) - x |
| 341 |
h = thisSpline%xa(j+1) - thisSpline%xa(j) |
| 342 |
|
| 343 |
a = del / h |
| 344 |
b = 1.0E0_DP - a |
| 345 |
c = a*(a*a - 1.0E0_DP)*h*h/6.0E0_DP |
| 346 |
d = b*(b*b - 1.0E0_DP)*h*h/6.0E0_DP |
| 347 |
|
| 348 |
y = a*thisSpline%ya(j) + b*thisSpline%ya(j+1) + c*thisSpline%yppa(j) + d*thisSpline%yppa(j+1) |
| 349 |
|
| 350 |
end subroutine splintd |
| 351 |
|
| 352 |
|
| 353 |
end module INTERPOLATION |