1 |
!! |
2 |
!! Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
!! |
4 |
!! The University of Notre Dame grants you ("Licensee") a |
5 |
!! non-exclusive, royalty free, license to use, modify and |
6 |
!! redistribute this software in source and binary code form, provided |
7 |
!! that the following conditions are met: |
8 |
!! |
9 |
!! 1. Acknowledgement of the program authors must be made in any |
10 |
!! publication of scientific results based in part on use of the |
11 |
!! program. An acceptable form of acknowledgement is citation of |
12 |
!! the article in which the program was described (Matthew |
13 |
!! A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
!! J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
!! Parallel Simulation Engine for Molecular Dynamics," |
16 |
!! J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
!! |
18 |
!! 2. Redistributions of source code must retain the above copyright |
19 |
!! notice, this list of conditions and the following disclaimer. |
20 |
!! |
21 |
!! 3. Redistributions in binary form must reproduce the above copyright |
22 |
!! notice, this list of conditions and the following disclaimer in the |
23 |
!! documentation and/or other materials provided with the |
24 |
!! distribution. |
25 |
!! |
26 |
!! This software is provided "AS IS," without a warranty of any |
27 |
!! kind. All express or implied conditions, representations and |
28 |
!! warranties, including any implied warranty of merchantability, |
29 |
!! fitness for a particular purpose or non-infringement, are hereby |
30 |
!! excluded. The University of Notre Dame and its licensors shall not |
31 |
!! be liable for any damages suffered by licensee as a result of |
32 |
!! using, modifying or distributing the software or its |
33 |
!! derivatives. In no event will the University of Notre Dame or its |
34 |
!! licensors be liable for any lost revenue, profit or data, or for |
35 |
!! direct, indirect, special, consequential, incidental or punitive |
36 |
!! damages, however caused and regardless of the theory of liability, |
37 |
!! arising out of the use of or inability to use software, even if the |
38 |
!! University of Notre Dame has been advised of the possibility of |
39 |
!! such damages. |
40 |
!! |
41 |
|
42 |
module electrostatic_module |
43 |
|
44 |
use force_globals |
45 |
use definitions |
46 |
use atype_module |
47 |
use vector_class |
48 |
use simulation |
49 |
use status |
50 |
use interpolation |
51 |
#ifdef IS_MPI |
52 |
use mpiSimulation |
53 |
#endif |
54 |
implicit none |
55 |
|
56 |
PRIVATE |
57 |
|
58 |
|
59 |
#define __FORTRAN90 |
60 |
#include "UseTheForce/DarkSide/fInteractionMap.h" |
61 |
#include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h" |
62 |
#include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h" |
63 |
|
64 |
|
65 |
!! these prefactors convert the multipole interactions into kcal / mol |
66 |
!! all were computed assuming distances are measured in angstroms |
67 |
!! Charge-Charge, assuming charges are measured in electrons |
68 |
real(kind=dp), parameter :: pre11 = 332.0637778d0 |
69 |
!! Charge-Dipole, assuming charges are measured in electrons, and |
70 |
!! dipoles are measured in debyes |
71 |
real(kind=dp), parameter :: pre12 = 69.13373d0 |
72 |
!! Dipole-Dipole, assuming dipoles are measured in debyes |
73 |
real(kind=dp), parameter :: pre22 = 14.39325d0 |
74 |
!! Charge-Quadrupole, assuming charges are measured in electrons, and |
75 |
!! quadrupoles are measured in 10^-26 esu cm^2 |
76 |
!! This unit is also known affectionately as an esu centi-barn. |
77 |
real(kind=dp), parameter :: pre14 = 69.13373d0 |
78 |
|
79 |
real(kind=dp), parameter :: zero = 0.0d0 |
80 |
|
81 |
!! number of points for electrostatic splines |
82 |
integer, parameter :: np = 100 |
83 |
|
84 |
!! variables to handle different summation methods for long-range |
85 |
!! electrostatics: |
86 |
integer, save :: summationMethod = NONE |
87 |
integer, save :: screeningMethod = UNDAMPED |
88 |
logical, save :: summationMethodChecked = .false. |
89 |
real(kind=DP), save :: defaultCutoff = 0.0_DP |
90 |
real(kind=DP), save :: defaultCutoff2 = 0.0_DP |
91 |
logical, save :: haveDefaultCutoff = .false. |
92 |
real(kind=DP), save :: dampingAlpha = 0.0_DP |
93 |
real(kind=DP), save :: alpha2 = 0.0_DP |
94 |
logical, save :: haveDampingAlpha = .false. |
95 |
real(kind=DP), save :: dielectric = 1.0_DP |
96 |
logical, save :: haveDielectric = .false. |
97 |
real(kind=DP), save :: constEXP = 0.0_DP |
98 |
real(kind=dp), save :: rcuti = 0.0_DP |
99 |
real(kind=dp), save :: rcuti2 = 0.0_DP |
100 |
real(kind=dp), save :: rcuti3 = 0.0_DP |
101 |
real(kind=dp), save :: rcuti4 = 0.0_DP |
102 |
real(kind=dp), save :: alphaPi = 0.0_DP |
103 |
real(kind=dp), save :: invRootPi = 0.0_DP |
104 |
real(kind=dp), save :: rrf = 1.0_DP |
105 |
real(kind=dp), save :: rt = 1.0_DP |
106 |
real(kind=dp), save :: rrfsq = 1.0_DP |
107 |
real(kind=dp), save :: preRF = 0.0_DP |
108 |
real(kind=dp), save :: preRF2 = 0.0_DP |
109 |
real(kind=dp), save :: f0 = 1.0_DP |
110 |
real(kind=dp), save :: f1 = 1.0_DP |
111 |
real(kind=dp), save :: f2 = 0.0_DP |
112 |
real(kind=dp), save :: f3 = 0.0_DP |
113 |
real(kind=dp), save :: f4 = 0.0_DP |
114 |
real(kind=dp), save :: f0c = 1.0_DP |
115 |
real(kind=dp), save :: f1c = 1.0_DP |
116 |
real(kind=dp), save :: f2c = 0.0_DP |
117 |
real(kind=dp), save :: f3c = 0.0_DP |
118 |
real(kind=dp), save :: f4c = 0.0_DP |
119 |
real(kind=dp), save :: df0 = 0.0_DP |
120 |
type(cubicSpline), save :: f0spline |
121 |
logical, save :: haveElectroSpline = .false. |
122 |
|
123 |
|
124 |
#if defined(__IFC) || defined(__PGI) |
125 |
! error function for ifc version > 7. |
126 |
double precision, external :: derfc |
127 |
#endif |
128 |
|
129 |
public :: setElectrostaticSummationMethod |
130 |
public :: setScreeningMethod |
131 |
public :: setElectrostaticCutoffRadius |
132 |
public :: setDampingAlpha |
133 |
public :: setReactionFieldDielectric |
134 |
public :: buildElectroSpline |
135 |
public :: newElectrostaticType |
136 |
public :: setCharge |
137 |
public :: setDipoleMoment |
138 |
public :: setSplitDipoleDistance |
139 |
public :: setQuadrupoleMoments |
140 |
public :: doElectrostaticPair |
141 |
public :: getCharge |
142 |
public :: getDipoleMoment |
143 |
public :: destroyElectrostaticTypes |
144 |
public :: self_self |
145 |
public :: rf_self_excludes |
146 |
|
147 |
|
148 |
type :: Electrostatic |
149 |
integer :: c_ident |
150 |
logical :: is_Charge = .false. |
151 |
logical :: is_Dipole = .false. |
152 |
logical :: is_SplitDipole = .false. |
153 |
logical :: is_Quadrupole = .false. |
154 |
logical :: is_Tap = .false. |
155 |
real(kind=DP) :: charge = 0.0_DP |
156 |
real(kind=DP) :: dipole_moment = 0.0_DP |
157 |
real(kind=DP) :: split_dipole_distance = 0.0_DP |
158 |
real(kind=DP), dimension(3) :: quadrupole_moments = 0.0_DP |
159 |
end type Electrostatic |
160 |
|
161 |
type(Electrostatic), dimension(:), allocatable :: ElectrostaticMap |
162 |
|
163 |
logical, save :: hasElectrostaticMap |
164 |
|
165 |
contains |
166 |
|
167 |
subroutine setElectrostaticSummationMethod(the_ESM) |
168 |
integer, intent(in) :: the_ESM |
169 |
|
170 |
if ((the_ESM .le. 0) .or. (the_ESM .gt. REACTION_FIELD)) then |
171 |
call handleError("setElectrostaticSummationMethod", "Unsupported Summation Method") |
172 |
endif |
173 |
|
174 |
summationMethod = the_ESM |
175 |
|
176 |
end subroutine setElectrostaticSummationMethod |
177 |
|
178 |
subroutine setScreeningMethod(the_SM) |
179 |
integer, intent(in) :: the_SM |
180 |
screeningMethod = the_SM |
181 |
end subroutine setScreeningMethod |
182 |
|
183 |
subroutine setElectrostaticCutoffRadius(thisRcut, thisRsw) |
184 |
real(kind=dp), intent(in) :: thisRcut |
185 |
real(kind=dp), intent(in) :: thisRsw |
186 |
defaultCutoff = thisRcut |
187 |
defaultCutoff2 = defaultCutoff*defaultCutoff |
188 |
rrf = defaultCutoff |
189 |
rt = thisRsw |
190 |
haveDefaultCutoff = .true. |
191 |
end subroutine setElectrostaticCutoffRadius |
192 |
|
193 |
subroutine setDampingAlpha(thisAlpha) |
194 |
real(kind=dp), intent(in) :: thisAlpha |
195 |
dampingAlpha = thisAlpha |
196 |
alpha2 = dampingAlpha*dampingAlpha |
197 |
haveDampingAlpha = .true. |
198 |
end subroutine setDampingAlpha |
199 |
|
200 |
subroutine setReactionFieldDielectric(thisDielectric) |
201 |
real(kind=dp), intent(in) :: thisDielectric |
202 |
dielectric = thisDielectric |
203 |
haveDielectric = .true. |
204 |
end subroutine setReactionFieldDielectric |
205 |
|
206 |
subroutine buildElectroSpline() |
207 |
real( kind = dp ), dimension(np) :: xvals, yvals |
208 |
real( kind = dp ) :: dx, rmin, rval |
209 |
integer :: i |
210 |
|
211 |
rmin = 0.0d0 |
212 |
|
213 |
dx = (defaultCutoff-rmin) / dble(np-1) |
214 |
|
215 |
do i = 1, np |
216 |
rval = rmin + dble(i-1)*dx |
217 |
xvals(i) = rval |
218 |
yvals(i) = derfc(dampingAlpha*rval) |
219 |
enddo |
220 |
|
221 |
call newSpline(f0spline, xvals, yvals, .true.) |
222 |
|
223 |
haveElectroSpline = .true. |
224 |
end subroutine buildElectroSpline |
225 |
|
226 |
subroutine newElectrostaticType(c_ident, is_Charge, is_Dipole, & |
227 |
is_SplitDipole, is_Quadrupole, is_Tap, status) |
228 |
|
229 |
integer, intent(in) :: c_ident |
230 |
logical, intent(in) :: is_Charge |
231 |
logical, intent(in) :: is_Dipole |
232 |
logical, intent(in) :: is_SplitDipole |
233 |
logical, intent(in) :: is_Quadrupole |
234 |
logical, intent(in) :: is_Tap |
235 |
integer, intent(out) :: status |
236 |
integer :: nAtypes, myATID, i, j |
237 |
|
238 |
status = 0 |
239 |
myATID = getFirstMatchingElement(atypes, "c_ident", c_ident) |
240 |
|
241 |
!! Be simple-minded and assume that we need an ElectrostaticMap that |
242 |
!! is the same size as the total number of atom types |
243 |
|
244 |
if (.not.allocated(ElectrostaticMap)) then |
245 |
|
246 |
nAtypes = getSize(atypes) |
247 |
|
248 |
if (nAtypes == 0) then |
249 |
status = -1 |
250 |
return |
251 |
end if |
252 |
|
253 |
allocate(ElectrostaticMap(nAtypes)) |
254 |
|
255 |
end if |
256 |
|
257 |
if (myATID .gt. size(ElectrostaticMap)) then |
258 |
status = -1 |
259 |
return |
260 |
endif |
261 |
|
262 |
! set the values for ElectrostaticMap for this atom type: |
263 |
|
264 |
ElectrostaticMap(myATID)%c_ident = c_ident |
265 |
ElectrostaticMap(myATID)%is_Charge = is_Charge |
266 |
ElectrostaticMap(myATID)%is_Dipole = is_Dipole |
267 |
ElectrostaticMap(myATID)%is_SplitDipole = is_SplitDipole |
268 |
ElectrostaticMap(myATID)%is_Quadrupole = is_Quadrupole |
269 |
ElectrostaticMap(myATID)%is_Tap = is_Tap |
270 |
|
271 |
hasElectrostaticMap = .true. |
272 |
|
273 |
end subroutine newElectrostaticType |
274 |
|
275 |
subroutine setCharge(c_ident, charge, status) |
276 |
integer, intent(in) :: c_ident |
277 |
real(kind=dp), intent(in) :: charge |
278 |
integer, intent(out) :: status |
279 |
integer :: myATID |
280 |
|
281 |
status = 0 |
282 |
myATID = getFirstMatchingElement(atypes, "c_ident", c_ident) |
283 |
|
284 |
if (.not.hasElectrostaticMap) then |
285 |
call handleError("electrostatic", "no ElectrostaticMap was present before first call of setCharge!") |
286 |
status = -1 |
287 |
return |
288 |
end if |
289 |
|
290 |
if (myATID .gt. size(ElectrostaticMap)) then |
291 |
call handleError("electrostatic", "ElectrostaticMap was found to be too small during setCharge!") |
292 |
status = -1 |
293 |
return |
294 |
endif |
295 |
|
296 |
if (.not.ElectrostaticMap(myATID)%is_Charge) then |
297 |
call handleError("electrostatic", "Attempt to setCharge of an atom type that is not a charge!") |
298 |
status = -1 |
299 |
return |
300 |
endif |
301 |
|
302 |
ElectrostaticMap(myATID)%charge = charge |
303 |
end subroutine setCharge |
304 |
|
305 |
subroutine setDipoleMoment(c_ident, dipole_moment, status) |
306 |
integer, intent(in) :: c_ident |
307 |
real(kind=dp), intent(in) :: dipole_moment |
308 |
integer, intent(out) :: status |
309 |
integer :: myATID |
310 |
|
311 |
status = 0 |
312 |
myATID = getFirstMatchingElement(atypes, "c_ident", c_ident) |
313 |
|
314 |
if (.not.hasElectrostaticMap) then |
315 |
call handleError("electrostatic", "no ElectrostaticMap was present before first call of setDipoleMoment!") |
316 |
status = -1 |
317 |
return |
318 |
end if |
319 |
|
320 |
if (myATID .gt. size(ElectrostaticMap)) then |
321 |
call handleError("electrostatic", "ElectrostaticMap was found to be too small during setDipoleMoment!") |
322 |
status = -1 |
323 |
return |
324 |
endif |
325 |
|
326 |
if (.not.ElectrostaticMap(myATID)%is_Dipole) then |
327 |
call handleError("electrostatic", "Attempt to setDipoleMoment of an atom type that is not a dipole!") |
328 |
status = -1 |
329 |
return |
330 |
endif |
331 |
|
332 |
ElectrostaticMap(myATID)%dipole_moment = dipole_moment |
333 |
end subroutine setDipoleMoment |
334 |
|
335 |
subroutine setSplitDipoleDistance(c_ident, split_dipole_distance, status) |
336 |
integer, intent(in) :: c_ident |
337 |
real(kind=dp), intent(in) :: split_dipole_distance |
338 |
integer, intent(out) :: status |
339 |
integer :: myATID |
340 |
|
341 |
status = 0 |
342 |
myATID = getFirstMatchingElement(atypes, "c_ident", c_ident) |
343 |
|
344 |
if (.not.hasElectrostaticMap) then |
345 |
call handleError("electrostatic", "no ElectrostaticMap was present before first call of setSplitDipoleDistance!") |
346 |
status = -1 |
347 |
return |
348 |
end if |
349 |
|
350 |
if (myATID .gt. size(ElectrostaticMap)) then |
351 |
call handleError("electrostatic", "ElectrostaticMap was found to be too small during setSplitDipoleDistance!") |
352 |
status = -1 |
353 |
return |
354 |
endif |
355 |
|
356 |
if (.not.ElectrostaticMap(myATID)%is_SplitDipole) then |
357 |
call handleError("electrostatic", "Attempt to setSplitDipoleDistance of an atom type that is not a splitDipole!") |
358 |
status = -1 |
359 |
return |
360 |
endif |
361 |
|
362 |
ElectrostaticMap(myATID)%split_dipole_distance = split_dipole_distance |
363 |
end subroutine setSplitDipoleDistance |
364 |
|
365 |
subroutine setQuadrupoleMoments(c_ident, quadrupole_moments, status) |
366 |
integer, intent(in) :: c_ident |
367 |
real(kind=dp), intent(in), dimension(3) :: quadrupole_moments |
368 |
integer, intent(out) :: status |
369 |
integer :: myATID, i, j |
370 |
|
371 |
status = 0 |
372 |
myATID = getFirstMatchingElement(atypes, "c_ident", c_ident) |
373 |
|
374 |
if (.not.hasElectrostaticMap) then |
375 |
call handleError("electrostatic", "no ElectrostaticMap was present before first call of setQuadrupoleMoments!") |
376 |
status = -1 |
377 |
return |
378 |
end if |
379 |
|
380 |
if (myATID .gt. size(ElectrostaticMap)) then |
381 |
call handleError("electrostatic", "ElectrostaticMap was found to be too small during setQuadrupoleMoments!") |
382 |
status = -1 |
383 |
return |
384 |
endif |
385 |
|
386 |
if (.not.ElectrostaticMap(myATID)%is_Quadrupole) then |
387 |
call handleError("electrostatic", "Attempt to setQuadrupoleMoments of an atom type that is not a quadrupole!") |
388 |
status = -1 |
389 |
return |
390 |
endif |
391 |
|
392 |
do i = 1, 3 |
393 |
ElectrostaticMap(myATID)%quadrupole_moments(i) = & |
394 |
quadrupole_moments(i) |
395 |
enddo |
396 |
|
397 |
end subroutine setQuadrupoleMoments |
398 |
|
399 |
|
400 |
function getCharge(atid) result (c) |
401 |
integer, intent(in) :: atid |
402 |
integer :: localError |
403 |
real(kind=dp) :: c |
404 |
|
405 |
if (.not.hasElectrostaticMap) then |
406 |
call handleError("electrostatic", "no ElectrostaticMap was present before first call of getCharge!") |
407 |
return |
408 |
end if |
409 |
|
410 |
if (.not.ElectrostaticMap(atid)%is_Charge) then |
411 |
call handleError("electrostatic", "getCharge was called for an atom type that isn't a charge!") |
412 |
return |
413 |
endif |
414 |
|
415 |
c = ElectrostaticMap(atid)%charge |
416 |
end function getCharge |
417 |
|
418 |
function getDipoleMoment(atid) result (dm) |
419 |
integer, intent(in) :: atid |
420 |
integer :: localError |
421 |
real(kind=dp) :: dm |
422 |
|
423 |
if (.not.hasElectrostaticMap) then |
424 |
call handleError("electrostatic", "no ElectrostaticMap was present before first call of getDipoleMoment!") |
425 |
return |
426 |
end if |
427 |
|
428 |
if (.not.ElectrostaticMap(atid)%is_Dipole) then |
429 |
call handleError("electrostatic", "getDipoleMoment was called for an atom type that isn't a dipole!") |
430 |
return |
431 |
endif |
432 |
|
433 |
dm = ElectrostaticMap(atid)%dipole_moment |
434 |
end function getDipoleMoment |
435 |
|
436 |
subroutine checkSummationMethod() |
437 |
|
438 |
if (.not.haveDefaultCutoff) then |
439 |
call handleError("checkSummationMethod", "no Default Cutoff set!") |
440 |
endif |
441 |
|
442 |
rcuti = 1.0d0 / defaultCutoff |
443 |
rcuti2 = rcuti*rcuti |
444 |
rcuti3 = rcuti2*rcuti |
445 |
rcuti4 = rcuti2*rcuti2 |
446 |
|
447 |
if (screeningMethod .eq. DAMPED) then |
448 |
if (.not.haveDampingAlpha) then |
449 |
call handleError("checkSummationMethod", "no Damping Alpha set!") |
450 |
endif |
451 |
|
452 |
if (.not.haveDefaultCutoff) then |
453 |
call handleError("checkSummationMethod", "no Default Cutoff set!") |
454 |
endif |
455 |
|
456 |
constEXP = exp(-alpha2*defaultCutoff2) |
457 |
invRootPi = 0.56418958354775628695d0 |
458 |
alphaPi = 2.0d0*dampingAlpha*invRootPi |
459 |
f0c = derfc(dampingAlpha*defaultCutoff) |
460 |
f1c = alphaPi*defaultCutoff*constEXP + f0c |
461 |
f2c = alphaPi*2.0d0*alpha2*constEXP |
462 |
f3c = alphaPi*2.0d0*alpha2*constEXP*defaultCutoff2*defaultCutoff |
463 |
endif |
464 |
|
465 |
if (summationMethod .eq. REACTION_FIELD) then |
466 |
if (haveDielectric) then |
467 |
defaultCutoff2 = defaultCutoff*defaultCutoff |
468 |
preRF = (dielectric-1.0d0) / & |
469 |
((2.0d0*dielectric+1.0d0)*defaultCutoff2*defaultCutoff) |
470 |
preRF2 = 2.0d0*preRF |
471 |
else |
472 |
call handleError("checkSummationMethod", "Dielectric not set") |
473 |
endif |
474 |
|
475 |
endif |
476 |
|
477 |
if (.not.haveElectroSpline) then |
478 |
call buildElectroSpline() |
479 |
end if |
480 |
|
481 |
summationMethodChecked = .true. |
482 |
end subroutine checkSummationMethod |
483 |
|
484 |
|
485 |
subroutine doElectrostaticPair(atom1, atom2, d, rij, r2, rcut, sw, & |
486 |
vpair, fpair, pot, eFrame, f, t, do_pot) |
487 |
|
488 |
logical, intent(in) :: do_pot |
489 |
|
490 |
integer, intent(in) :: atom1, atom2 |
491 |
integer :: localError |
492 |
|
493 |
real(kind=dp), intent(in) :: rij, r2, sw, rcut |
494 |
real(kind=dp), intent(in), dimension(3) :: d |
495 |
real(kind=dp), intent(inout) :: vpair |
496 |
real(kind=dp), intent(inout), dimension(3) :: fpair |
497 |
|
498 |
real( kind = dp ) :: pot |
499 |
real( kind = dp ), dimension(9,nLocal) :: eFrame |
500 |
real( kind = dp ), dimension(3,nLocal) :: f |
501 |
real( kind = dp ), dimension(3,nLocal) :: felec |
502 |
real( kind = dp ), dimension(3,nLocal) :: t |
503 |
|
504 |
real (kind = dp), dimension(3) :: ux_i, uy_i, uz_i |
505 |
real (kind = dp), dimension(3) :: ux_j, uy_j, uz_j |
506 |
real (kind = dp), dimension(3) :: dudux_i, duduy_i, duduz_i |
507 |
real (kind = dp), dimension(3) :: dudux_j, duduy_j, duduz_j |
508 |
|
509 |
logical :: i_is_Charge, i_is_Dipole, i_is_SplitDipole, i_is_Quadrupole |
510 |
logical :: j_is_Charge, j_is_Dipole, j_is_SplitDipole, j_is_Quadrupole |
511 |
logical :: i_is_Tap, j_is_Tap |
512 |
integer :: me1, me2, id1, id2 |
513 |
real (kind=dp) :: q_i, q_j, mu_i, mu_j, d_i, d_j |
514 |
real (kind=dp) :: qxx_i, qyy_i, qzz_i |
515 |
real (kind=dp) :: qxx_j, qyy_j, qzz_j |
516 |
real (kind=dp) :: cx_i, cy_i, cz_i |
517 |
real (kind=dp) :: cx_j, cy_j, cz_j |
518 |
real (kind=dp) :: cx2, cy2, cz2 |
519 |
real (kind=dp) :: ct_i, ct_j, ct_ij, a0, a1 |
520 |
real (kind=dp) :: riji, ri, ri2, ri3, ri4 |
521 |
real (kind=dp) :: pref, vterm, epot, dudr, vterm1, vterm2 |
522 |
real (kind=dp) :: xhat, yhat, zhat |
523 |
real (kind=dp) :: dudx, dudy, dudz |
524 |
real (kind=dp) :: scale, sc2, bigR |
525 |
real (kind=dp) :: varEXP |
526 |
real (kind=dp) :: pot_term |
527 |
real (kind=dp) :: preVal, rfVal |
528 |
real (kind=dp) :: f13, f134 |
529 |
|
530 |
if (.not.summationMethodChecked) then |
531 |
call checkSummationMethod() |
532 |
endif |
533 |
|
534 |
#ifdef IS_MPI |
535 |
me1 = atid_Row(atom1) |
536 |
me2 = atid_Col(atom2) |
537 |
#else |
538 |
me1 = atid(atom1) |
539 |
me2 = atid(atom2) |
540 |
#endif |
541 |
|
542 |
!! some variables we'll need independent of electrostatic type: |
543 |
|
544 |
riji = 1.0d0 / rij |
545 |
|
546 |
xhat = d(1) * riji |
547 |
yhat = d(2) * riji |
548 |
zhat = d(3) * riji |
549 |
|
550 |
!! logicals |
551 |
i_is_Charge = ElectrostaticMap(me1)%is_Charge |
552 |
i_is_Dipole = ElectrostaticMap(me1)%is_Dipole |
553 |
i_is_SplitDipole = ElectrostaticMap(me1)%is_SplitDipole |
554 |
i_is_Quadrupole = ElectrostaticMap(me1)%is_Quadrupole |
555 |
i_is_Tap = ElectrostaticMap(me1)%is_Tap |
556 |
|
557 |
j_is_Charge = ElectrostaticMap(me2)%is_Charge |
558 |
j_is_Dipole = ElectrostaticMap(me2)%is_Dipole |
559 |
j_is_SplitDipole = ElectrostaticMap(me2)%is_SplitDipole |
560 |
j_is_Quadrupole = ElectrostaticMap(me2)%is_Quadrupole |
561 |
j_is_Tap = ElectrostaticMap(me2)%is_Tap |
562 |
|
563 |
if (i_is_Charge) then |
564 |
q_i = ElectrostaticMap(me1)%charge |
565 |
endif |
566 |
|
567 |
if (i_is_Dipole) then |
568 |
mu_i = ElectrostaticMap(me1)%dipole_moment |
569 |
#ifdef IS_MPI |
570 |
uz_i(1) = eFrame_Row(3,atom1) |
571 |
uz_i(2) = eFrame_Row(6,atom1) |
572 |
uz_i(3) = eFrame_Row(9,atom1) |
573 |
#else |
574 |
uz_i(1) = eFrame(3,atom1) |
575 |
uz_i(2) = eFrame(6,atom1) |
576 |
uz_i(3) = eFrame(9,atom1) |
577 |
#endif |
578 |
ct_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat |
579 |
|
580 |
if (i_is_SplitDipole) then |
581 |
d_i = ElectrostaticMap(me1)%split_dipole_distance |
582 |
endif |
583 |
duduz_i = zero |
584 |
endif |
585 |
|
586 |
if (i_is_Quadrupole) then |
587 |
qxx_i = ElectrostaticMap(me1)%quadrupole_moments(1) |
588 |
qyy_i = ElectrostaticMap(me1)%quadrupole_moments(2) |
589 |
qzz_i = ElectrostaticMap(me1)%quadrupole_moments(3) |
590 |
#ifdef IS_MPI |
591 |
ux_i(1) = eFrame_Row(1,atom1) |
592 |
ux_i(2) = eFrame_Row(4,atom1) |
593 |
ux_i(3) = eFrame_Row(7,atom1) |
594 |
uy_i(1) = eFrame_Row(2,atom1) |
595 |
uy_i(2) = eFrame_Row(5,atom1) |
596 |
uy_i(3) = eFrame_Row(8,atom1) |
597 |
uz_i(1) = eFrame_Row(3,atom1) |
598 |
uz_i(2) = eFrame_Row(6,atom1) |
599 |
uz_i(3) = eFrame_Row(9,atom1) |
600 |
#else |
601 |
ux_i(1) = eFrame(1,atom1) |
602 |
ux_i(2) = eFrame(4,atom1) |
603 |
ux_i(3) = eFrame(7,atom1) |
604 |
uy_i(1) = eFrame(2,atom1) |
605 |
uy_i(2) = eFrame(5,atom1) |
606 |
uy_i(3) = eFrame(8,atom1) |
607 |
uz_i(1) = eFrame(3,atom1) |
608 |
uz_i(2) = eFrame(6,atom1) |
609 |
uz_i(3) = eFrame(9,atom1) |
610 |
#endif |
611 |
cx_i = ux_i(1)*xhat + ux_i(2)*yhat + ux_i(3)*zhat |
612 |
cy_i = uy_i(1)*xhat + uy_i(2)*yhat + uy_i(3)*zhat |
613 |
cz_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat |
614 |
dudux_i = zero |
615 |
duduy_i = zero |
616 |
duduz_i = zero |
617 |
endif |
618 |
|
619 |
if (j_is_Charge) then |
620 |
q_j = ElectrostaticMap(me2)%charge |
621 |
endif |
622 |
|
623 |
if (j_is_Dipole) then |
624 |
mu_j = ElectrostaticMap(me2)%dipole_moment |
625 |
#ifdef IS_MPI |
626 |
uz_j(1) = eFrame_Col(3,atom2) |
627 |
uz_j(2) = eFrame_Col(6,atom2) |
628 |
uz_j(3) = eFrame_Col(9,atom2) |
629 |
#else |
630 |
uz_j(1) = eFrame(3,atom2) |
631 |
uz_j(2) = eFrame(6,atom2) |
632 |
uz_j(3) = eFrame(9,atom2) |
633 |
#endif |
634 |
ct_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat |
635 |
|
636 |
if (j_is_SplitDipole) then |
637 |
d_j = ElectrostaticMap(me2)%split_dipole_distance |
638 |
endif |
639 |
duduz_j = zero |
640 |
endif |
641 |
|
642 |
if (j_is_Quadrupole) then |
643 |
qxx_j = ElectrostaticMap(me2)%quadrupole_moments(1) |
644 |
qyy_j = ElectrostaticMap(me2)%quadrupole_moments(2) |
645 |
qzz_j = ElectrostaticMap(me2)%quadrupole_moments(3) |
646 |
#ifdef IS_MPI |
647 |
ux_j(1) = eFrame_Col(1,atom2) |
648 |
ux_j(2) = eFrame_Col(4,atom2) |
649 |
ux_j(3) = eFrame_Col(7,atom2) |
650 |
uy_j(1) = eFrame_Col(2,atom2) |
651 |
uy_j(2) = eFrame_Col(5,atom2) |
652 |
uy_j(3) = eFrame_Col(8,atom2) |
653 |
uz_j(1) = eFrame_Col(3,atom2) |
654 |
uz_j(2) = eFrame_Col(6,atom2) |
655 |
uz_j(3) = eFrame_Col(9,atom2) |
656 |
#else |
657 |
ux_j(1) = eFrame(1,atom2) |
658 |
ux_j(2) = eFrame(4,atom2) |
659 |
ux_j(3) = eFrame(7,atom2) |
660 |
uy_j(1) = eFrame(2,atom2) |
661 |
uy_j(2) = eFrame(5,atom2) |
662 |
uy_j(3) = eFrame(8,atom2) |
663 |
uz_j(1) = eFrame(3,atom2) |
664 |
uz_j(2) = eFrame(6,atom2) |
665 |
uz_j(3) = eFrame(9,atom2) |
666 |
#endif |
667 |
cx_j = ux_j(1)*xhat + ux_j(2)*yhat + ux_j(3)*zhat |
668 |
cy_j = uy_j(1)*xhat + uy_j(2)*yhat + uy_j(3)*zhat |
669 |
cz_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat |
670 |
dudux_j = zero |
671 |
duduy_j = zero |
672 |
duduz_j = zero |
673 |
endif |
674 |
|
675 |
epot = zero |
676 |
dudx = zero |
677 |
dudy = zero |
678 |
dudz = zero |
679 |
|
680 |
if (i_is_Charge) then |
681 |
|
682 |
if (j_is_Charge) then |
683 |
if (screeningMethod .eq. DAMPED) then |
684 |
call lookupUniformSpline1d(f0spline, rij, f0, df0) |
685 |
f1 = -rij * df0 + f0 |
686 |
!!$ f0 = derfc(dampingAlpha*rij) |
687 |
!!$ varEXP = exp(-alpha2*rij*rij) |
688 |
!!$ f1 = alphaPi*rij*varEXP + f0 |
689 |
endif |
690 |
|
691 |
preVal = pre11 * q_i * q_j |
692 |
|
693 |
if (summationMethod .eq. SHIFTED_POTENTIAL) then |
694 |
vterm = preVal * (riji*f0 - rcuti*f0c) |
695 |
|
696 |
dudr = -sw * preVal * riji * riji * f1 |
697 |
|
698 |
elseif (summationMethod .eq. SHIFTED_FORCE) then |
699 |
vterm = preVal * ( riji*f0 - rcuti*f0c + & |
700 |
f1c*rcuti2*(rij-defaultCutoff) ) |
701 |
|
702 |
dudr = -sw*preVal * (riji*riji*f1 - rcuti2*f1c) |
703 |
|
704 |
elseif (summationMethod .eq. REACTION_FIELD) then |
705 |
rfVal = preRF*rij*rij |
706 |
vterm = preVal * ( riji + rfVal ) |
707 |
|
708 |
dudr = sw * preVal * ( 2.0d0*rfVal - riji )*riji |
709 |
|
710 |
else |
711 |
vterm = preVal * riji*f0 |
712 |
|
713 |
dudr = - sw * preVal * riji*riji*f1 |
714 |
|
715 |
endif |
716 |
|
717 |
vpair = vpair + vterm |
718 |
epot = epot + sw*vterm |
719 |
|
720 |
dudx = dudx + dudr * xhat |
721 |
dudy = dudy + dudr * yhat |
722 |
dudz = dudz + dudr * zhat |
723 |
|
724 |
endif |
725 |
|
726 |
if (j_is_Dipole) then |
727 |
if (screeningMethod .eq. DAMPED) then |
728 |
call lookupUniformSpline1d(f0spline, rij, f0, df0) |
729 |
f1 = -rij * df0 + f0 |
730 |
f3 = -2.0d0*alpha2*df0*rij*rij*rij |
731 |
!!$ f0 = derfc(dampingAlpha*rij) |
732 |
!!$ varEXP = exp(-alpha2*rij*rij) |
733 |
!!$ f1 = alphaPi*rij*varEXP + f0 |
734 |
!!$ f3 = alphaPi*2.0d0*alpha2*varEXP*rij*rij*rij |
735 |
endif |
736 |
|
737 |
pref = pre12 * q_i * mu_j |
738 |
|
739 |
if (summationMethod .eq. REACTION_FIELD) then |
740 |
ri2 = riji * riji |
741 |
ri3 = ri2 * riji |
742 |
|
743 |
vterm = - pref * ct_j * ( ri2 - preRF2*rij ) |
744 |
vpair = vpair + vterm |
745 |
epot = epot + sw*vterm |
746 |
|
747 |
!! this has a + sign in the () because the rij vector is |
748 |
!! r_j - r_i and the charge-dipole potential takes the origin |
749 |
!! as the point dipole, which is atom j in this case. |
750 |
|
751 |
dudx = dudx - sw*pref*( ri3*(uz_j(1) - 3.0d0*ct_j*xhat) - & |
752 |
preRF2*uz_j(1) ) |
753 |
dudy = dudy - sw*pref*( ri3*(uz_j(2) - 3.0d0*ct_j*yhat) - & |
754 |
preRF2*uz_j(2) ) |
755 |
dudz = dudz - sw*pref*( ri3*(uz_j(3) - 3.0d0*ct_j*zhat) - & |
756 |
preRF2*uz_j(3) ) |
757 |
duduz_j(1) = duduz_j(1) - sw*pref * xhat * ( ri2 - preRF2*rij ) |
758 |
duduz_j(2) = duduz_j(2) - sw*pref * yhat * ( ri2 - preRF2*rij ) |
759 |
duduz_j(3) = duduz_j(3) - sw*pref * zhat * ( ri2 - preRF2*rij ) |
760 |
|
761 |
else |
762 |
if (j_is_SplitDipole) then |
763 |
BigR = sqrt(r2 + 0.25d0 * d_j * d_j) |
764 |
ri = 1.0d0 / BigR |
765 |
scale = rij * ri |
766 |
else |
767 |
ri = riji |
768 |
scale = 1.0d0 |
769 |
endif |
770 |
|
771 |
ri2 = ri * ri |
772 |
ri3 = ri2 * ri |
773 |
sc2 = scale * scale |
774 |
|
775 |
pot_term = ri2 * scale * f1 |
776 |
vterm = - pref * ct_j * pot_term |
777 |
vpair = vpair + vterm |
778 |
epot = epot + sw*vterm |
779 |
|
780 |
!! this has a + sign in the () because the rij vector is |
781 |
!! r_j - r_i and the charge-dipole potential takes the origin |
782 |
!! as the point dipole, which is atom j in this case. |
783 |
|
784 |
dudx = dudx - sw*pref * ri3 * ( uz_j(1)*f1 - & |
785 |
ct_j*xhat*sc2*( 3.0d0*f1 + f3 ) ) |
786 |
dudy = dudy - sw*pref * ri3 * ( uz_j(2)*f1 - & |
787 |
ct_j*yhat*sc2*( 3.0d0*f1 + f3 ) ) |
788 |
dudz = dudz - sw*pref * ri3 * ( uz_j(3)*f1 - & |
789 |
ct_j*zhat*sc2*( 3.0d0*f1 + f3 ) ) |
790 |
|
791 |
duduz_j(1) = duduz_j(1) - sw*pref * pot_term * xhat |
792 |
duduz_j(2) = duduz_j(2) - sw*pref * pot_term * yhat |
793 |
duduz_j(3) = duduz_j(3) - sw*pref * pot_term * zhat |
794 |
|
795 |
endif |
796 |
endif |
797 |
|
798 |
if (j_is_Quadrupole) then |
799 |
if (screeningMethod .eq. DAMPED) then |
800 |
call lookupUniformSpline1d(f0spline, rij, f0, df0) |
801 |
!!$ f0 = derfc(dampingAlpha*rij) |
802 |
!!$ varEXP = exp(-alpha2*rij*rij) |
803 |
!!$ f1 = alphaPi*rij*varEXP + f0 |
804 |
!!$ f2 = alphaPi*2.0d0*alpha2*varEXP |
805 |
f1 = -rij * df0 + f0 |
806 |
f2 = -2.0d0*alpha2*df0 |
807 |
f3 = f2*rij*rij*rij |
808 |
f4 = 2.0d0*alpha2*f2*rij |
809 |
endif |
810 |
|
811 |
ri2 = riji * riji |
812 |
ri3 = ri2 * riji |
813 |
ri4 = ri2 * ri2 |
814 |
cx2 = cx_j * cx_j |
815 |
cy2 = cy_j * cy_j |
816 |
cz2 = cz_j * cz_j |
817 |
|
818 |
pref = pre14 * q_i / 3.0d0 |
819 |
pot_term = ri3*(qxx_j * (3.0d0*cx2 - 1.0d0) + & |
820 |
qyy_j * (3.0d0*cy2 - 1.0d0) + & |
821 |
qzz_j * (3.0d0*cz2 - 1.0d0)) |
822 |
vterm = pref * (pot_term*f1 + (qxx_j*cx2 + qyy_j*cy2 + qzz_j*cz2)*f2) |
823 |
vpair = vpair + vterm |
824 |
epot = epot + sw*vterm |
825 |
|
826 |
dudx = dudx - sw*pref*pot_term*riji*xhat*(5.0d0*f1 + f3) + & |
827 |
sw*pref*ri4 * ( & |
828 |
qxx_j*(2.0d0*cx_j*ux_j(1)*(3.0d0*f1 + f3) - 2.0d0*xhat*f1) + & |
829 |
qyy_j*(2.0d0*cy_j*uy_j(1)*(3.0d0*f1 + f3) - 2.0d0*xhat*f1) + & |
830 |
qzz_j*(2.0d0*cz_j*uz_j(1)*(3.0d0*f1 + f3) - 2.0d0*xhat*f1) ) & |
831 |
+ (qxx_j*cx2 + qyy_j*cy2 + qzz_j*cz2)*f4 |
832 |
dudy = dudy - sw*pref*pot_term*riji*yhat*(5.0d0*f1 + f3) + & |
833 |
sw*pref*ri4 * ( & |
834 |
qxx_j*(2.0d0*cx_j*ux_j(2)*(3.0d0*f1 + f3) - 2.0d0*yhat*f1) + & |
835 |
qyy_j*(2.0d0*cy_j*uy_j(2)*(3.0d0*f1 + f3) - 2.0d0*yhat*f1) + & |
836 |
qzz_j*(2.0d0*cz_j*uz_j(2)*(3.0d0*f1 + f3) - 2.0d0*yhat*f1) ) & |
837 |
+ (qxx_j*cx2 + qyy_j*cy2 + qzz_j*cz2)*f4 |
838 |
dudz = dudz - sw*pref*pot_term*riji*zhat*(5.0d0*f1 + f3) + & |
839 |
sw*pref*ri4 * ( & |
840 |
qxx_j*(2.0d0*cx_j*ux_j(3)*(3.0d0*f1 + f3) - 2.0d0*zhat*f1) + & |
841 |
qyy_j*(2.0d0*cy_j*uy_j(3)*(3.0d0*f1 + f3) - 2.0d0*zhat*f1) + & |
842 |
qzz_j*(2.0d0*cz_j*uz_j(3)*(3.0d0*f1 + f3) - 2.0d0*zhat*f1) ) & |
843 |
+ (qxx_j*cx2 + qyy_j*cy2 + qzz_j*cz2)*f4 |
844 |
|
845 |
dudux_j(1) = dudux_j(1) + sw*pref*ri3*( (qxx_j*2.0d0*cx_j*xhat) & |
846 |
* (3.0d0*f1 + f3) ) |
847 |
dudux_j(2) = dudux_j(2) + sw*pref*ri3*( (qxx_j*2.0d0*cx_j*yhat) & |
848 |
* (3.0d0*f1 + f3) ) |
849 |
dudux_j(3) = dudux_j(3) + sw*pref*ri3*( (qxx_j*2.0d0*cx_j*zhat) & |
850 |
* (3.0d0*f1 + f3) ) |
851 |
|
852 |
duduy_j(1) = duduy_j(1) + sw*pref*ri3*( (qyy_j*2.0d0*cy_j*xhat) & |
853 |
* (3.0d0*f1 + f3) ) |
854 |
duduy_j(2) = duduy_j(2) + sw*pref*ri3*( (qyy_j*2.0d0*cy_j*yhat) & |
855 |
* (3.0d0*f1 + f3) ) |
856 |
duduy_j(3) = duduy_j(3) + sw*pref*ri3*( (qyy_j*2.0d0*cy_j*zhat) & |
857 |
* (3.0d0*f1 + f3) ) |
858 |
|
859 |
duduz_j(1) = duduz_j(1) + sw*pref*ri3*( (qzz_j*2.0d0*cz_j*xhat) & |
860 |
* (3.0d0*f1 + f3) ) |
861 |
duduz_j(2) = duduz_j(2) + sw*pref*ri3*( (qzz_j*2.0d0*cz_j*yhat) & |
862 |
* (3.0d0*f1 + f3) ) |
863 |
duduz_j(3) = duduz_j(3) + sw*pref*ri3*( (qzz_j*2.0d0*cz_j*zhat) & |
864 |
* (3.0d0*f1 + f3) ) |
865 |
|
866 |
endif |
867 |
endif |
868 |
|
869 |
if (i_is_Dipole) then |
870 |
|
871 |
if (j_is_Charge) then |
872 |
if (screeningMethod .eq. DAMPED) then |
873 |
call lookupUniformSpline1d(f0spline, rij, f0, df0) |
874 |
f1 = -rij * df0 + f0 |
875 |
f3 = -2.0d0*alpha2*df0*rij*rij*rij |
876 |
!!$ f0 = derfc(dampingAlpha*rij) |
877 |
!!$ varEXP = exp(-alpha2*rij*rij) |
878 |
!!$ f1 = alphaPi*rij*varEXP + f0 |
879 |
!!$ f3 = alphaPi*2.0d0*alpha2*varEXP*rij*rij*rij |
880 |
endif |
881 |
|
882 |
pref = pre12 * q_j * mu_i |
883 |
|
884 |
if (summationMethod .eq. SHIFTED_POTENTIAL) then |
885 |
ri2 = riji * riji |
886 |
ri3 = ri2 * riji |
887 |
|
888 |
pot_term = ri2*f1 - rcuti2*f1c |
889 |
vterm = pref * ct_i * pot_term |
890 |
vpair = vpair + vterm |
891 |
epot = epot + sw*vterm |
892 |
|
893 |
dudx = dudx + sw*pref*( ri3*(uz_i(1)*f1-ct_i*xhat*(3.0d0*f1+f3)) ) |
894 |
dudy = dudy + sw*pref*( ri3*(uz_i(2)*f1-ct_i*yhat*(3.0d0*f1+f3)) ) |
895 |
dudz = dudz + sw*pref*( ri3*(uz_i(3)*f1-ct_i*zhat*(3.0d0*f1+f3)) ) |
896 |
|
897 |
duduz_i(1) = duduz_i(1) + sw*pref * xhat * pot_term |
898 |
duduz_i(2) = duduz_i(2) + sw*pref * yhat * pot_term |
899 |
duduz_i(3) = duduz_i(3) + sw*pref * zhat * pot_term |
900 |
|
901 |
elseif (summationMethod .eq. SHIFTED_FORCE) then |
902 |
ri2 = riji * riji |
903 |
ri3 = ri2 * riji |
904 |
|
905 |
!! might need a -(f1c-f0c) or dct_i/dr in the derivative term... |
906 |
pot_term = ri2*f1 - rcuti2*f1c + & |
907 |
(2.0d0*rcuti3*f1c + f2c)*( rij - defaultCutoff ) |
908 |
vterm = pref * ct_i * pot_term |
909 |
vpair = vpair + vterm |
910 |
epot = epot + sw*vterm |
911 |
|
912 |
dudx = dudx + sw*pref*( ri3*(uz_i(1)*f1-ct_i*xhat*(3.0d0*f1+f3)) & |
913 |
- rcuti3*(uz_i(1)*f1c-ct_i*xhat*(3.0d0*f1c+f3c)) ) |
914 |
dudy = dudy + sw*pref*( ri3*(uz_i(2)*f1-ct_i*yhat*(3.0d0*f1+f3)) & |
915 |
- rcuti3*(uz_i(1)*f1c-ct_i*xhat*(3.0d0*f1c+f3c)) ) |
916 |
dudz = dudz + sw*pref*( ri3*(uz_i(3)*f1-ct_i*zhat*(3.0d0*f1+f3)) & |
917 |
- rcuti3*(uz_i(1)*f1c-ct_i*xhat*(3.0d0*f1c+f3c)) ) |
918 |
|
919 |
duduz_i(1) = duduz_i(1) + sw*pref * xhat * pot_term |
920 |
duduz_i(2) = duduz_i(2) + sw*pref * yhat * pot_term |
921 |
duduz_i(3) = duduz_i(3) + sw*pref * zhat * pot_term |
922 |
|
923 |
elseif (summationMethod .eq. REACTION_FIELD) then |
924 |
ri2 = riji * riji |
925 |
ri3 = ri2 * riji |
926 |
|
927 |
vterm = pref * ct_i * ( ri2 - preRF2*rij ) |
928 |
vpair = vpair + vterm |
929 |
epot = epot + sw*vterm |
930 |
|
931 |
dudx = dudx + sw*pref * ( ri3*(uz_i(1) - 3.0d0*ct_i*xhat) - & |
932 |
preRF2*uz_i(1) ) |
933 |
dudy = dudy + sw*pref * ( ri3*(uz_i(2) - 3.0d0*ct_i*yhat) - & |
934 |
preRF2*uz_i(2) ) |
935 |
dudz = dudz + sw*pref * ( ri3*(uz_i(3) - 3.0d0*ct_i*zhat) - & |
936 |
preRF2*uz_i(3) ) |
937 |
|
938 |
duduz_i(1) = duduz_i(1) + sw*pref * xhat * ( ri2 - preRF2*rij ) |
939 |
duduz_i(2) = duduz_i(2) + sw*pref * yhat * ( ri2 - preRF2*rij ) |
940 |
duduz_i(3) = duduz_i(3) + sw*pref * zhat * ( ri2 - preRF2*rij ) |
941 |
|
942 |
else |
943 |
if (i_is_SplitDipole) then |
944 |
BigR = sqrt(r2 + 0.25d0 * d_i * d_i) |
945 |
ri = 1.0d0 / BigR |
946 |
scale = rij * ri |
947 |
else |
948 |
ri = riji |
949 |
scale = 1.0d0 |
950 |
endif |
951 |
|
952 |
ri2 = ri * ri |
953 |
ri3 = ri2 * ri |
954 |
sc2 = scale * scale |
955 |
|
956 |
pot_term = ri2 * f1 * scale |
957 |
vterm = pref * ct_i * pot_term |
958 |
vpair = vpair + vterm |
959 |
epot = epot + sw*vterm |
960 |
|
961 |
dudx = dudx + sw*pref * ri3 * ( uz_i(1)*f1 - & |
962 |
ct_i*xhat*sc2*( 3.0d0*f1 + f3 ) ) |
963 |
dudy = dudy + sw*pref * ri3 * ( uz_i(2)*f1 - & |
964 |
ct_i*yhat*sc2*( 3.0d0*f1 + f3 ) ) |
965 |
dudz = dudz + sw*pref * ri3 * ( uz_i(3)*f1 - & |
966 |
ct_i*zhat*sc2*( 3.0d0*f1 + f3 ) ) |
967 |
|
968 |
duduz_i(1) = duduz_i(1) + sw*pref * pot_term * xhat |
969 |
duduz_i(2) = duduz_i(2) + sw*pref * pot_term * yhat |
970 |
duduz_i(3) = duduz_i(3) + sw*pref * pot_term * zhat |
971 |
endif |
972 |
endif |
973 |
|
974 |
if (j_is_Dipole) then |
975 |
if (screeningMethod .eq. DAMPED) then |
976 |
call lookupUniformSpline1d(f0spline, rij, f0, df0) |
977 |
!!$ f0 = derfc(dampingAlpha*rij) |
978 |
!!$ varEXP = exp(-alpha2*rij*rij) |
979 |
!!$ f1 = alphaPi*rij*varEXP + f0 |
980 |
!!$ f2 = alphaPi*2.0d0*alpha2*varEXP |
981 |
f1 = -rij * df0 + f0 |
982 |
f2 = -2.0d0*alpha2*df0 |
983 |
f3 = f2*rij*rij*rij |
984 |
f4 = 2.0d0*alpha2*f3*rij*rij |
985 |
endif |
986 |
|
987 |
ct_ij = uz_i(1)*uz_j(1) + uz_i(2)*uz_j(2) + uz_i(3)*uz_j(3) |
988 |
|
989 |
ri2 = riji * riji |
990 |
ri3 = ri2 * riji |
991 |
ri4 = ri2 * ri2 |
992 |
|
993 |
pref = pre22 * mu_i * mu_j |
994 |
|
995 |
if (summationMethod .eq. REACTION_FIELD) then |
996 |
vterm = pref*( ri3*(ct_ij - 3.0d0 * ct_i * ct_j) - & |
997 |
preRF2*ct_ij ) |
998 |
vpair = vpair + vterm |
999 |
epot = epot + sw*vterm |
1000 |
|
1001 |
a1 = 5.0d0 * ct_i * ct_j - ct_ij |
1002 |
|
1003 |
dudx = dudx + sw*pref*3.0d0*ri4 & |
1004 |
* (a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1)) |
1005 |
dudy = dudy + sw*pref*3.0d0*ri4 & |
1006 |
* (a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2)) |
1007 |
dudz = dudz + sw*pref*3.0d0*ri4 & |
1008 |
* (a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3)) |
1009 |
|
1010 |
duduz_i(1) = duduz_i(1) + sw*pref*(ri3*(uz_j(1)-3.0d0*ct_j*xhat) & |
1011 |
- preRF2*uz_j(1)) |
1012 |
duduz_i(2) = duduz_i(2) + sw*pref*(ri3*(uz_j(2)-3.0d0*ct_j*yhat) & |
1013 |
- preRF2*uz_j(2)) |
1014 |
duduz_i(3) = duduz_i(3) + sw*pref*(ri3*(uz_j(3)-3.0d0*ct_j*zhat) & |
1015 |
- preRF2*uz_j(3)) |
1016 |
duduz_j(1) = duduz_j(1) + sw*pref*(ri3*(uz_i(1)-3.0d0*ct_i*xhat) & |
1017 |
- preRF2*uz_i(1)) |
1018 |
duduz_j(2) = duduz_j(2) + sw*pref*(ri3*(uz_i(2)-3.0d0*ct_i*yhat) & |
1019 |
- preRF2*uz_i(2)) |
1020 |
duduz_j(3) = duduz_j(3) + sw*pref*(ri3*(uz_i(3)-3.0d0*ct_i*zhat) & |
1021 |
- preRF2*uz_i(3)) |
1022 |
|
1023 |
else |
1024 |
if (i_is_SplitDipole) then |
1025 |
if (j_is_SplitDipole) then |
1026 |
BigR = sqrt(r2 + 0.25d0 * d_i * d_i + 0.25d0 * d_j * d_j) |
1027 |
else |
1028 |
BigR = sqrt(r2 + 0.25d0 * d_i * d_i) |
1029 |
endif |
1030 |
ri = 1.0d0 / BigR |
1031 |
scale = rij * ri |
1032 |
else |
1033 |
if (j_is_SplitDipole) then |
1034 |
BigR = sqrt(r2 + 0.25d0 * d_j * d_j) |
1035 |
ri = 1.0d0 / BigR |
1036 |
scale = rij * ri |
1037 |
else |
1038 |
ri = riji |
1039 |
scale = 1.0d0 |
1040 |
endif |
1041 |
endif |
1042 |
|
1043 |
sc2 = scale * scale |
1044 |
|
1045 |
pot_term = (ct_ij - 3.0d0 * ct_i * ct_j * sc2) |
1046 |
vterm = pref * ( ri3*pot_term*f1 + (ct_i * ct_j)*f2 ) |
1047 |
vpair = vpair + vterm |
1048 |
epot = epot + sw*vterm |
1049 |
|
1050 |
f13 = f1+f3 |
1051 |
f134 = f13 + f4 |
1052 |
|
1053 |
!!$ dudx = dudx + sw*pref * ( ri4*scale*( & |
1054 |
!!$ 3.0d0*(a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1))*f1 & |
1055 |
!!$ - pot_term*f3) & |
1056 |
!!$ + 2.0d0*ct_i*ct_j*xhat*(ct_i*uz_j(1)+ct_j*uz_i(1))*f3 & |
1057 |
!!$ + (ct_i * ct_j)*f4 ) |
1058 |
!!$ dudy = dudy + sw*pref * ( ri4*scale*( & |
1059 |
!!$ 3.0d0*(a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2))*f1 & |
1060 |
!!$ - pot_term*f3) & |
1061 |
!!$ + 2.0d0*ct_i*ct_j*yhat*(ct_i*uz_j(2)+ct_j*uz_i(2))*f3 & |
1062 |
!!$ + (ct_i * ct_j)*f4 ) |
1063 |
!!$ dudz = dudz + sw*pref * ( ri4*scale*( & |
1064 |
!!$ 3.0d0*(a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3))*f1 & |
1065 |
!!$ - pot_term*f3) & |
1066 |
!!$ + 2.0d0*ct_i*ct_j*zhat*(ct_i*uz_j(3)+ct_j*uz_i(3))*f3 & |
1067 |
!!$ + (ct_i * ct_j)*f4 ) |
1068 |
|
1069 |
dudx = dudx + sw*pref * ( ri4*scale*( & |
1070 |
15.0d0*(ct_i * ct_j * sc2)*xhat*f134 - & |
1071 |
3.0d0*(ct_i*uz_j(1) + ct_j*uz_i(1) + ct_ij*xhat)*f134) ) |
1072 |
dudy = dudy + sw*pref * ( ri4*scale*( & |
1073 |
15.0d0*(ct_i * ct_j * sc2)*yhat*f134 - & |
1074 |
3.0d0*(ct_i*uz_j(2) + ct_j*uz_i(2) + ct_ij*yhat)*f134) ) |
1075 |
dudz = dudz + sw*pref * ( ri4*scale*( & |
1076 |
15.0d0*(ct_i * ct_j * sc2)*zhat*f134 - & |
1077 |
3.0d0*(ct_i*uz_j(3) + ct_j*uz_i(3) + ct_ij*zhat)*f134) ) |
1078 |
|
1079 |
duduz_i(1) = duduz_i(1) + sw*pref * & |
1080 |
( ri3*(uz_j(1) - 3.0d0*ct_j*xhat*sc2)*f1 + (ct_j*xhat)*f2 ) |
1081 |
duduz_i(2) = duduz_i(2) + sw*pref * & |
1082 |
( ri3*(uz_j(2) - 3.0d0*ct_j*yhat*sc2)*f1 + (ct_j*yhat)*f2 ) |
1083 |
duduz_i(3) = duduz_i(3) + sw*pref * & |
1084 |
( ri3*(uz_j(3) - 3.0d0*ct_j*zhat*sc2)*f1 + (ct_j*zhat)*f2 ) |
1085 |
|
1086 |
duduz_j(1) = duduz_j(1) + sw*pref * & |
1087 |
( ri3*(uz_i(1) - 3.0d0*ct_i*xhat*sc2)*f1 + (ct_i*xhat)*f2 ) |
1088 |
duduz_j(2) = duduz_j(2) + sw*pref * & |
1089 |
( ri3*(uz_i(2) - 3.0d0*ct_i*yhat*sc2)*f1 + (ct_i*yhat)*f2 ) |
1090 |
duduz_j(3) = duduz_j(3) + sw*pref * & |
1091 |
( ri3*(uz_i(3) - 3.0d0*ct_i*zhat*sc2)*f1 + (ct_i*zhat)*f2 ) |
1092 |
endif |
1093 |
endif |
1094 |
endif |
1095 |
|
1096 |
if (i_is_Quadrupole) then |
1097 |
if (j_is_Charge) then |
1098 |
if (screeningMethod .eq. DAMPED) then |
1099 |
call lookupUniformSpline1d(f0spline, rij, f0, df0) |
1100 |
!!$ f0 = derfc(dampingAlpha*rij) |
1101 |
!!$ varEXP = exp(-alpha2*rij*rij) |
1102 |
!!$ f1 = alphaPi*rij*varEXP + f0 |
1103 |
!!$ f2 = alphaPi*2.0d0*alpha2*varEXP |
1104 |
f1 = -rij * df0 + f0 |
1105 |
f2 = -2.0d0*alpha2*df0 |
1106 |
f3 = f2*rij*rij*rij |
1107 |
f4 = 2.0d0*alpha2*f2*rij |
1108 |
endif |
1109 |
|
1110 |
ri2 = riji * riji |
1111 |
ri3 = ri2 * riji |
1112 |
ri4 = ri2 * ri2 |
1113 |
cx2 = cx_i * cx_i |
1114 |
cy2 = cy_i * cy_i |
1115 |
cz2 = cz_i * cz_i |
1116 |
|
1117 |
pref = pre14 * q_j / 3.0d0 |
1118 |
pot_term = ri3 * (qxx_i * (3.0d0*cx2 - 1.0d0) + & |
1119 |
qyy_i * (3.0d0*cy2 - 1.0d0) + & |
1120 |
qzz_i * (3.0d0*cz2 - 1.0d0)) |
1121 |
vterm = pref * (pot_term*f1 + (qxx_i*cx2 + qyy_i*cy2 + qzz_i*cz2)*f2) |
1122 |
vpair = vpair + vterm |
1123 |
epot = epot + sw*vterm |
1124 |
|
1125 |
dudx = dudx - sw*pref*pot_term*riji*xhat*(5.0d0*f1 + f3) + & |
1126 |
sw*pref*ri4 * ( & |
1127 |
qxx_i*(2.0d0*cx_i*ux_i(1)*(3.0d0*f1 + f3) - 2.0d0*xhat*f1) + & |
1128 |
qyy_i*(2.0d0*cy_i*uy_i(1)*(3.0d0*f1 + f3) - 2.0d0*xhat*f1) + & |
1129 |
qzz_i*(2.0d0*cz_i*uz_i(1)*(3.0d0*f1 + f3) - 2.0d0*xhat*f1) ) & |
1130 |
+ (qxx_i*cx2 + qyy_i*cy2 + qzz_i*cz2)*f4 |
1131 |
dudy = dudy - sw*pref*pot_term*riji*yhat*(5.0d0*f1 + f3) + & |
1132 |
sw*pref*ri4 * ( & |
1133 |
qxx_i*(2.0d0*cx_i*ux_i(2)*(3.0d0*f1 + f3) - 2.0d0*yhat*f1) + & |
1134 |
qyy_i*(2.0d0*cy_i*uy_i(2)*(3.0d0*f1 + f3) - 2.0d0*yhat*f1) + & |
1135 |
qzz_i*(2.0d0*cz_i*uz_i(2)*(3.0d0*f1 + f3) - 2.0d0*yhat*f1) ) & |
1136 |
+ (qxx_i*cx2 + qyy_i*cy2 + qzz_i*cz2)*f4 |
1137 |
dudz = dudz - sw*pref*pot_term*riji*zhat*(5.0d0*f1 + f3) + & |
1138 |
sw*pref*ri4 * ( & |
1139 |
qxx_i*(2.0d0*cx_i*ux_i(3)*(3.0d0*f1 + f3) - 2.0d0*zhat*f1) + & |
1140 |
qyy_i*(2.0d0*cy_i*uy_i(3)*(3.0d0*f1 + f3) - 2.0d0*zhat*f1) + & |
1141 |
qzz_i*(2.0d0*cz_i*uz_i(3)*(3.0d0*f1 + f3) - 2.0d0*zhat*f1) ) & |
1142 |
+ (qxx_i*cx2 + qyy_i*cy2 + qzz_i*cz2)*f4 |
1143 |
|
1144 |
dudux_i(1) = dudux_i(1) + sw*pref*( ri3*(qxx_i*2.0d0*cx_i*xhat) & |
1145 |
* (3.0d0*f1 + f3) ) |
1146 |
dudux_i(2) = dudux_i(2) + sw*pref*( ri3*(qxx_i*2.0d0*cx_i*yhat) & |
1147 |
* (3.0d0*f1 + f3) ) |
1148 |
dudux_i(3) = dudux_i(3) + sw*pref*( ri3*(qxx_i*2.0d0*cx_i*zhat) & |
1149 |
* (3.0d0*f1 + f3) ) |
1150 |
|
1151 |
duduy_i(1) = duduy_i(1) + sw*pref*( ri3*(qyy_i*2.0d0*cy_i*xhat) & |
1152 |
* (3.0d0*f1 + f3) ) |
1153 |
duduy_i(2) = duduy_i(2) + sw*pref*( ri3*(qyy_i*2.0d0*cy_i*yhat) & |
1154 |
* (3.0d0*f1 + f3) ) |
1155 |
duduy_i(3) = duduy_i(3) + sw*pref*( ri3*(qyy_i*2.0d0*cy_i*zhat) & |
1156 |
* (3.0d0*f1 + f3) ) |
1157 |
|
1158 |
duduz_i(1) = duduz_i(1) + sw*pref*( ri3*(qzz_i*2.0d0*cz_i*xhat) & |
1159 |
* (3.0d0*f1 + f3) ) |
1160 |
duduz_i(2) = duduz_i(2) + sw*pref*( ri3*(qzz_i*2.0d0*cz_i*yhat) & |
1161 |
* (3.0d0*f1 + f3) ) |
1162 |
duduz_i(3) = duduz_i(3) + sw*pref*( ri3*(qzz_i*2.0d0*cz_i*zhat) & |
1163 |
* (3.0d0*f1 + f3) ) |
1164 |
|
1165 |
endif |
1166 |
endif |
1167 |
|
1168 |
|
1169 |
if (do_pot) then |
1170 |
#ifdef IS_MPI |
1171 |
pot_row(ELECTROSTATIC_POT,atom1) = pot_row(ELECTROSTATIC_POT,atom1) + 0.5d0*epot |
1172 |
pot_col(ELECTROSTATIC_POT,atom2) = pot_col(ELECTROSTATIC_POT,atom2) + 0.5d0*epot |
1173 |
#else |
1174 |
pot = pot + epot |
1175 |
#endif |
1176 |
endif |
1177 |
|
1178 |
#ifdef IS_MPI |
1179 |
f_Row(1,atom1) = f_Row(1,atom1) + dudx |
1180 |
f_Row(2,atom1) = f_Row(2,atom1) + dudy |
1181 |
f_Row(3,atom1) = f_Row(3,atom1) + dudz |
1182 |
|
1183 |
f_Col(1,atom2) = f_Col(1,atom2) - dudx |
1184 |
f_Col(2,atom2) = f_Col(2,atom2) - dudy |
1185 |
f_Col(3,atom2) = f_Col(3,atom2) - dudz |
1186 |
|
1187 |
if (i_is_Dipole .or. i_is_Quadrupole) then |
1188 |
t_Row(1,atom1)=t_Row(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2) |
1189 |
t_Row(2,atom1)=t_Row(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3) |
1190 |
t_Row(3,atom1)=t_Row(3,atom1) - uz_i(1)*duduz_i(2) + uz_i(2)*duduz_i(1) |
1191 |
endif |
1192 |
if (i_is_Quadrupole) then |
1193 |
t_Row(1,atom1)=t_Row(1,atom1) - ux_i(2)*dudux_i(3) + ux_i(3)*dudux_i(2) |
1194 |
t_Row(2,atom1)=t_Row(2,atom1) - ux_i(3)*dudux_i(1) + ux_i(1)*dudux_i(3) |
1195 |
t_Row(3,atom1)=t_Row(3,atom1) - ux_i(1)*dudux_i(2) + ux_i(2)*dudux_i(1) |
1196 |
|
1197 |
t_Row(1,atom1)=t_Row(1,atom1) - uy_i(2)*duduy_i(3) + uy_i(3)*duduy_i(2) |
1198 |
t_Row(2,atom1)=t_Row(2,atom1) - uy_i(3)*duduy_i(1) + uy_i(1)*duduy_i(3) |
1199 |
t_Row(3,atom1)=t_Row(3,atom1) - uy_i(1)*duduy_i(2) + uy_i(2)*duduy_i(1) |
1200 |
endif |
1201 |
|
1202 |
if (j_is_Dipole .or. j_is_Quadrupole) then |
1203 |
t_Col(1,atom2)=t_Col(1,atom2) - uz_j(2)*duduz_j(3) + uz_j(3)*duduz_j(2) |
1204 |
t_Col(2,atom2)=t_Col(2,atom2) - uz_j(3)*duduz_j(1) + uz_j(1)*duduz_j(3) |
1205 |
t_Col(3,atom2)=t_Col(3,atom2) - uz_j(1)*duduz_j(2) + uz_j(2)*duduz_j(1) |
1206 |
endif |
1207 |
if (j_is_Quadrupole) then |
1208 |
t_Col(1,atom2)=t_Col(1,atom2) - ux_j(2)*dudux_j(3) + ux_j(3)*dudux_j(2) |
1209 |
t_Col(2,atom2)=t_Col(2,atom2) - ux_j(3)*dudux_j(1) + ux_j(1)*dudux_j(3) |
1210 |
t_Col(3,atom2)=t_Col(3,atom2) - ux_j(1)*dudux_j(2) + ux_j(2)*dudux_j(1) |
1211 |
|
1212 |
t_Col(1,atom2)=t_Col(1,atom2) - uy_j(2)*duduy_j(3) + uy_j(3)*duduy_j(2) |
1213 |
t_Col(2,atom2)=t_Col(2,atom2) - uy_j(3)*duduy_j(1) + uy_j(1)*duduy_j(3) |
1214 |
t_Col(3,atom2)=t_Col(3,atom2) - uy_j(1)*duduy_j(2) + uy_j(2)*duduy_j(1) |
1215 |
endif |
1216 |
|
1217 |
#else |
1218 |
f(1,atom1) = f(1,atom1) + dudx |
1219 |
f(2,atom1) = f(2,atom1) + dudy |
1220 |
f(3,atom1) = f(3,atom1) + dudz |
1221 |
|
1222 |
f(1,atom2) = f(1,atom2) - dudx |
1223 |
f(2,atom2) = f(2,atom2) - dudy |
1224 |
f(3,atom2) = f(3,atom2) - dudz |
1225 |
|
1226 |
if (i_is_Dipole .or. i_is_Quadrupole) then |
1227 |
t(1,atom1)=t(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2) |
1228 |
t(2,atom1)=t(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3) |
1229 |
t(3,atom1)=t(3,atom1) - uz_i(1)*duduz_i(2) + uz_i(2)*duduz_i(1) |
1230 |
endif |
1231 |
if (i_is_Quadrupole) then |
1232 |
t(1,atom1)=t(1,atom1) - ux_i(2)*dudux_i(3) + ux_i(3)*dudux_i(2) |
1233 |
t(2,atom1)=t(2,atom1) - ux_i(3)*dudux_i(1) + ux_i(1)*dudux_i(3) |
1234 |
t(3,atom1)=t(3,atom1) - ux_i(1)*dudux_i(2) + ux_i(2)*dudux_i(1) |
1235 |
|
1236 |
t(1,atom1)=t(1,atom1) - uy_i(2)*duduy_i(3) + uy_i(3)*duduy_i(2) |
1237 |
t(2,atom1)=t(2,atom1) - uy_i(3)*duduy_i(1) + uy_i(1)*duduy_i(3) |
1238 |
t(3,atom1)=t(3,atom1) - uy_i(1)*duduy_i(2) + uy_i(2)*duduy_i(1) |
1239 |
endif |
1240 |
|
1241 |
if (j_is_Dipole .or. j_is_Quadrupole) then |
1242 |
t(1,atom2)=t(1,atom2) - uz_j(2)*duduz_j(3) + uz_j(3)*duduz_j(2) |
1243 |
t(2,atom2)=t(2,atom2) - uz_j(3)*duduz_j(1) + uz_j(1)*duduz_j(3) |
1244 |
t(3,atom2)=t(3,atom2) - uz_j(1)*duduz_j(2) + uz_j(2)*duduz_j(1) |
1245 |
endif |
1246 |
if (j_is_Quadrupole) then |
1247 |
t(1,atom2)=t(1,atom2) - ux_j(2)*dudux_j(3) + ux_j(3)*dudux_j(2) |
1248 |
t(2,atom2)=t(2,atom2) - ux_j(3)*dudux_j(1) + ux_j(1)*dudux_j(3) |
1249 |
t(3,atom2)=t(3,atom2) - ux_j(1)*dudux_j(2) + ux_j(2)*dudux_j(1) |
1250 |
|
1251 |
t(1,atom2)=t(1,atom2) - uy_j(2)*duduy_j(3) + uy_j(3)*duduy_j(2) |
1252 |
t(2,atom2)=t(2,atom2) - uy_j(3)*duduy_j(1) + uy_j(1)*duduy_j(3) |
1253 |
t(3,atom2)=t(3,atom2) - uy_j(1)*duduy_j(2) + uy_j(2)*duduy_j(1) |
1254 |
endif |
1255 |
|
1256 |
#endif |
1257 |
|
1258 |
#ifdef IS_MPI |
1259 |
id1 = AtomRowToGlobal(atom1) |
1260 |
id2 = AtomColToGlobal(atom2) |
1261 |
#else |
1262 |
id1 = atom1 |
1263 |
id2 = atom2 |
1264 |
#endif |
1265 |
|
1266 |
if (molMembershipList(id1) .ne. molMembershipList(id2)) then |
1267 |
|
1268 |
fpair(1) = fpair(1) + dudx |
1269 |
fpair(2) = fpair(2) + dudy |
1270 |
fpair(3) = fpair(3) + dudz |
1271 |
|
1272 |
endif |
1273 |
|
1274 |
return |
1275 |
end subroutine doElectrostaticPair |
1276 |
|
1277 |
subroutine destroyElectrostaticTypes() |
1278 |
|
1279 |
if(allocated(ElectrostaticMap)) deallocate(ElectrostaticMap) |
1280 |
|
1281 |
end subroutine destroyElectrostaticTypes |
1282 |
|
1283 |
subroutine self_self(atom1, eFrame, mypot, t, do_pot) |
1284 |
logical, intent(in) :: do_pot |
1285 |
integer, intent(in) :: atom1 |
1286 |
integer :: atid1 |
1287 |
real(kind=dp), dimension(9,nLocal) :: eFrame |
1288 |
real(kind=dp), dimension(3,nLocal) :: t |
1289 |
real(kind=dp) :: mu1, c1 |
1290 |
real(kind=dp) :: preVal, epot, mypot |
1291 |
real(kind=dp) :: eix, eiy, eiz |
1292 |
|
1293 |
! this is a local only array, so we use the local atom type id's: |
1294 |
atid1 = atid(atom1) |
1295 |
|
1296 |
if (.not.summationMethodChecked) then |
1297 |
call checkSummationMethod() |
1298 |
endif |
1299 |
|
1300 |
if (summationMethod .eq. REACTION_FIELD) then |
1301 |
if (ElectrostaticMap(atid1)%is_Dipole) then |
1302 |
mu1 = getDipoleMoment(atid1) |
1303 |
|
1304 |
preVal = pre22 * preRF2 * mu1*mu1 |
1305 |
mypot = mypot - 0.5d0*preVal |
1306 |
|
1307 |
! The self-correction term adds into the reaction field vector |
1308 |
|
1309 |
eix = preVal * eFrame(3,atom1) |
1310 |
eiy = preVal * eFrame(6,atom1) |
1311 |
eiz = preVal * eFrame(9,atom1) |
1312 |
|
1313 |
! once again, this is self-self, so only the local arrays are needed |
1314 |
! even for MPI jobs: |
1315 |
|
1316 |
t(1,atom1)=t(1,atom1) - eFrame(6,atom1)*eiz + & |
1317 |
eFrame(9,atom1)*eiy |
1318 |
t(2,atom1)=t(2,atom1) - eFrame(9,atom1)*eix + & |
1319 |
eFrame(3,atom1)*eiz |
1320 |
t(3,atom1)=t(3,atom1) - eFrame(3,atom1)*eiy + & |
1321 |
eFrame(6,atom1)*eix |
1322 |
|
1323 |
endif |
1324 |
|
1325 |
elseif ( (summationMethod .eq. SHIFTED_FORCE) .or. & |
1326 |
(summationMethod .eq. SHIFTED_POTENTIAL) ) then |
1327 |
if (ElectrostaticMap(atid1)%is_Charge) then |
1328 |
c1 = getCharge(atid1) |
1329 |
|
1330 |
if (screeningMethod .eq. DAMPED) then |
1331 |
mypot = mypot - (f0c * rcuti * 0.5d0 + & |
1332 |
dampingAlpha*invRootPi) * c1 * c1 |
1333 |
|
1334 |
else |
1335 |
mypot = mypot - (rcuti * 0.5d0 * c1 * c1) |
1336 |
|
1337 |
endif |
1338 |
endif |
1339 |
endif |
1340 |
|
1341 |
return |
1342 |
end subroutine self_self |
1343 |
|
1344 |
subroutine rf_self_excludes(atom1, atom2, sw, eFrame, d, rij, vpair, myPot, & |
1345 |
f, t, do_pot) |
1346 |
logical, intent(in) :: do_pot |
1347 |
integer, intent(in) :: atom1 |
1348 |
integer, intent(in) :: atom2 |
1349 |
logical :: i_is_Charge, j_is_Charge |
1350 |
logical :: i_is_Dipole, j_is_Dipole |
1351 |
integer :: atid1 |
1352 |
integer :: atid2 |
1353 |
real(kind=dp), intent(in) :: rij |
1354 |
real(kind=dp), intent(in) :: sw |
1355 |
real(kind=dp), intent(in), dimension(3) :: d |
1356 |
real(kind=dp), intent(inout) :: vpair |
1357 |
real(kind=dp), dimension(9,nLocal) :: eFrame |
1358 |
real(kind=dp), dimension(3,nLocal) :: f |
1359 |
real(kind=dp), dimension(3,nLocal) :: t |
1360 |
real (kind = dp), dimension(3) :: duduz_i |
1361 |
real (kind = dp), dimension(3) :: duduz_j |
1362 |
real (kind = dp), dimension(3) :: uz_i |
1363 |
real (kind = dp), dimension(3) :: uz_j |
1364 |
real(kind=dp) :: q_i, q_j, mu_i, mu_j |
1365 |
real(kind=dp) :: xhat, yhat, zhat |
1366 |
real(kind=dp) :: ct_i, ct_j |
1367 |
real(kind=dp) :: ri2, ri3, riji, vterm |
1368 |
real(kind=dp) :: pref, preVal, rfVal, myPot |
1369 |
real(kind=dp) :: dudx, dudy, dudz, dudr |
1370 |
|
1371 |
if (.not.summationMethodChecked) then |
1372 |
call checkSummationMethod() |
1373 |
endif |
1374 |
|
1375 |
dudx = zero |
1376 |
dudy = zero |
1377 |
dudz = zero |
1378 |
|
1379 |
riji = 1.0d0/rij |
1380 |
|
1381 |
xhat = d(1) * riji |
1382 |
yhat = d(2) * riji |
1383 |
zhat = d(3) * riji |
1384 |
|
1385 |
! this is a local only array, so we use the local atom type id's: |
1386 |
atid1 = atid(atom1) |
1387 |
atid2 = atid(atom2) |
1388 |
i_is_Charge = ElectrostaticMap(atid1)%is_Charge |
1389 |
j_is_Charge = ElectrostaticMap(atid2)%is_Charge |
1390 |
i_is_Dipole = ElectrostaticMap(atid1)%is_Dipole |
1391 |
j_is_Dipole = ElectrostaticMap(atid2)%is_Dipole |
1392 |
|
1393 |
if (i_is_Charge.and.j_is_Charge) then |
1394 |
q_i = ElectrostaticMap(atid1)%charge |
1395 |
q_j = ElectrostaticMap(atid2)%charge |
1396 |
|
1397 |
preVal = pre11 * q_i * q_j |
1398 |
rfVal = preRF*rij*rij |
1399 |
vterm = preVal * rfVal |
1400 |
|
1401 |
myPot = myPot + sw*vterm |
1402 |
|
1403 |
dudr = sw*preVal * 2.0d0*rfVal*riji |
1404 |
|
1405 |
dudx = dudx + dudr * xhat |
1406 |
dudy = dudy + dudr * yhat |
1407 |
dudz = dudz + dudr * zhat |
1408 |
|
1409 |
elseif (i_is_Charge.and.j_is_Dipole) then |
1410 |
q_i = ElectrostaticMap(atid1)%charge |
1411 |
mu_j = ElectrostaticMap(atid2)%dipole_moment |
1412 |
uz_j(1) = eFrame(3,atom2) |
1413 |
uz_j(2) = eFrame(6,atom2) |
1414 |
uz_j(3) = eFrame(9,atom2) |
1415 |
ct_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat |
1416 |
|
1417 |
ri2 = riji * riji |
1418 |
ri3 = ri2 * riji |
1419 |
|
1420 |
pref = pre12 * q_i * mu_j |
1421 |
vterm = - pref * ct_j * ( ri2 - preRF2*rij ) |
1422 |
myPot = myPot + sw*vterm |
1423 |
|
1424 |
dudx = dudx - sw*pref*( ri3*(uz_j(1)-3.0d0*ct_j*xhat) & |
1425 |
- preRF2*uz_j(1) ) |
1426 |
dudy = dudy - sw*pref*( ri3*(uz_j(2)-3.0d0*ct_j*yhat) & |
1427 |
- preRF2*uz_j(2) ) |
1428 |
dudz = dudz - sw*pref*( ri3*(uz_j(3)-3.0d0*ct_j*zhat) & |
1429 |
- preRF2*uz_j(3) ) |
1430 |
|
1431 |
duduz_j(1) = duduz_j(1) - sw * pref * xhat * ( ri2 - preRF2*rij ) |
1432 |
duduz_j(2) = duduz_j(2) - sw * pref * yhat * ( ri2 - preRF2*rij ) |
1433 |
duduz_j(3) = duduz_j(3) - sw * pref * zhat * ( ri2 - preRF2*rij ) |
1434 |
|
1435 |
elseif (i_is_Dipole.and.j_is_Charge) then |
1436 |
mu_i = ElectrostaticMap(atid1)%dipole_moment |
1437 |
q_j = ElectrostaticMap(atid2)%charge |
1438 |
uz_i(1) = eFrame(3,atom1) |
1439 |
uz_i(2) = eFrame(6,atom1) |
1440 |
uz_i(3) = eFrame(9,atom1) |
1441 |
ct_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat |
1442 |
|
1443 |
ri2 = riji * riji |
1444 |
ri3 = ri2 * riji |
1445 |
|
1446 |
pref = pre12 * q_j * mu_i |
1447 |
vterm = pref * ct_i * ( ri2 - preRF2*rij ) |
1448 |
myPot = myPot + sw*vterm |
1449 |
|
1450 |
dudx = dudx + sw*pref*( ri3*(uz_i(1)-3.0d0*ct_i*xhat) & |
1451 |
- preRF2*uz_i(1) ) |
1452 |
dudy = dudy + sw*pref*( ri3*(uz_i(2)-3.0d0*ct_i*yhat) & |
1453 |
- preRF2*uz_i(2) ) |
1454 |
dudz = dudz + sw*pref*( ri3*(uz_i(3)-3.0d0*ct_i*zhat) & |
1455 |
- preRF2*uz_i(3) ) |
1456 |
|
1457 |
duduz_i(1) = duduz_i(1) + sw * pref * xhat * ( ri2 - preRF2*rij ) |
1458 |
duduz_i(2) = duduz_i(2) + sw * pref * yhat * ( ri2 - preRF2*rij ) |
1459 |
duduz_i(3) = duduz_i(3) + sw * pref * zhat * ( ri2 - preRF2*rij ) |
1460 |
|
1461 |
endif |
1462 |
|
1463 |
|
1464 |
! accumulate the forces and torques resulting from the self term |
1465 |
f(1,atom1) = f(1,atom1) + dudx |
1466 |
f(2,atom1) = f(2,atom1) + dudy |
1467 |
f(3,atom1) = f(3,atom1) + dudz |
1468 |
|
1469 |
f(1,atom2) = f(1,atom2) - dudx |
1470 |
f(2,atom2) = f(2,atom2) - dudy |
1471 |
f(3,atom2) = f(3,atom2) - dudz |
1472 |
|
1473 |
if (i_is_Dipole) then |
1474 |
t(1,atom1)=t(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2) |
1475 |
t(2,atom1)=t(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3) |
1476 |
t(3,atom1)=t(3,atom1) - uz_i(1)*duduz_i(2) + uz_i(2)*duduz_i(1) |
1477 |
elseif (j_is_Dipole) then |
1478 |
t(1,atom2)=t(1,atom2) - uz_j(2)*duduz_j(3) + uz_j(3)*duduz_j(2) |
1479 |
t(2,atom2)=t(2,atom2) - uz_j(3)*duduz_j(1) + uz_j(1)*duduz_j(3) |
1480 |
t(3,atom2)=t(3,atom2) - uz_j(1)*duduz_j(2) + uz_j(2)*duduz_j(1) |
1481 |
endif |
1482 |
|
1483 |
return |
1484 |
end subroutine rf_self_excludes |
1485 |
|
1486 |
end module electrostatic_module |