1 |
gezelter |
411 |
!! |
2 |
|
|
!! Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
|
!! |
4 |
|
|
!! The University of Notre Dame grants you ("Licensee") a |
5 |
|
|
!! non-exclusive, royalty free, license to use, modify and |
6 |
|
|
!! redistribute this software in source and binary code form, provided |
7 |
|
|
!! that the following conditions are met: |
8 |
|
|
!! |
9 |
|
|
!! 1. Acknowledgement of the program authors must be made in any |
10 |
|
|
!! publication of scientific results based in part on use of the |
11 |
|
|
!! program. An acceptable form of acknowledgement is citation of |
12 |
|
|
!! the article in which the program was described (Matthew |
13 |
|
|
!! A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
|
|
!! J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
|
|
!! Parallel Simulation Engine for Molecular Dynamics," |
16 |
|
|
!! J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
|
|
!! |
18 |
|
|
!! 2. Redistributions of source code must retain the above copyright |
19 |
|
|
!! notice, this list of conditions and the following disclaimer. |
20 |
|
|
!! |
21 |
|
|
!! 3. Redistributions in binary form must reproduce the above copyright |
22 |
|
|
!! notice, this list of conditions and the following disclaimer in the |
23 |
|
|
!! documentation and/or other materials provided with the |
24 |
|
|
!! distribution. |
25 |
|
|
!! |
26 |
|
|
!! This software is provided "AS IS," without a warranty of any |
27 |
|
|
!! kind. All express or implied conditions, representations and |
28 |
|
|
!! warranties, including any implied warranty of merchantability, |
29 |
|
|
!! fitness for a particular purpose or non-infringement, are hereby |
30 |
|
|
!! excluded. The University of Notre Dame and its licensors shall not |
31 |
|
|
!! be liable for any damages suffered by licensee as a result of |
32 |
|
|
!! using, modifying or distributing the software or its |
33 |
|
|
!! derivatives. In no event will the University of Notre Dame or its |
34 |
|
|
!! licensors be liable for any lost revenue, profit or data, or for |
35 |
|
|
!! direct, indirect, special, consequential, incidental or punitive |
36 |
|
|
!! damages, however caused and regardless of the theory of liability, |
37 |
|
|
!! arising out of the use of or inability to use software, even if the |
38 |
|
|
!! University of Notre Dame has been advised of the possibility of |
39 |
|
|
!! such damages. |
40 |
|
|
!! |
41 |
|
|
|
42 |
|
|
module electrostatic_module |
43 |
|
|
|
44 |
|
|
use force_globals |
45 |
|
|
use definitions |
46 |
|
|
use atype_module |
47 |
|
|
use vector_class |
48 |
|
|
use simulation |
49 |
|
|
use status |
50 |
|
|
#ifdef IS_MPI |
51 |
|
|
use mpiSimulation |
52 |
|
|
#endif |
53 |
|
|
implicit none |
54 |
|
|
|
55 |
|
|
PRIVATE |
56 |
|
|
|
57 |
gezelter |
434 |
!! these prefactors convert the multipole interactions into kcal / mol |
58 |
|
|
!! all were computed assuming distances are measured in angstroms |
59 |
|
|
!! Charge-Charge, assuming charges are measured in electrons |
60 |
gezelter |
411 |
real(kind=dp), parameter :: pre11 = 332.0637778_dp |
61 |
gezelter |
434 |
!! Charge-Dipole, assuming charges are measured in electrons, and |
62 |
|
|
!! dipoles are measured in debyes |
63 |
|
|
real(kind=dp), parameter :: pre12 = 69.13373_dp |
64 |
|
|
!! Dipole-Dipole, assuming dipoles are measured in debyes |
65 |
|
|
real(kind=dp), parameter :: pre22 = 14.39325_dp |
66 |
|
|
!! Charge-Quadrupole, assuming charges are measured in electrons, and |
67 |
|
|
!! quadrupoles are measured in 10^-26 esu cm^2 |
68 |
|
|
!! This unit is also known affectionately as an esu centi-barn. |
69 |
|
|
real(kind=dp), parameter :: pre14 = 69.13373_dp |
70 |
gezelter |
411 |
|
71 |
|
|
public :: newElectrostaticType |
72 |
|
|
public :: setCharge |
73 |
|
|
public :: setDipoleMoment |
74 |
|
|
public :: setSplitDipoleDistance |
75 |
|
|
public :: setQuadrupoleMoments |
76 |
|
|
public :: doElectrostaticPair |
77 |
|
|
public :: getCharge |
78 |
|
|
public :: getDipoleMoment |
79 |
|
|
|
80 |
|
|
type :: Electrostatic |
81 |
|
|
integer :: c_ident |
82 |
|
|
logical :: is_Charge = .false. |
83 |
|
|
logical :: is_Dipole = .false. |
84 |
|
|
logical :: is_SplitDipole = .false. |
85 |
|
|
logical :: is_Quadrupole = .false. |
86 |
|
|
real(kind=DP) :: charge = 0.0_DP |
87 |
|
|
real(kind=DP) :: dipole_moment = 0.0_DP |
88 |
|
|
real(kind=DP) :: split_dipole_distance = 0.0_DP |
89 |
|
|
real(kind=DP), dimension(3) :: quadrupole_moments = 0.0_DP |
90 |
|
|
end type Electrostatic |
91 |
|
|
|
92 |
|
|
type(Electrostatic), dimension(:), allocatable :: ElectrostaticMap |
93 |
|
|
|
94 |
|
|
contains |
95 |
|
|
|
96 |
|
|
subroutine newElectrostaticType(c_ident, is_Charge, is_Dipole, & |
97 |
|
|
is_SplitDipole, is_Quadrupole, status) |
98 |
|
|
|
99 |
|
|
integer, intent(in) :: c_ident |
100 |
|
|
logical, intent(in) :: is_Charge |
101 |
|
|
logical, intent(in) :: is_Dipole |
102 |
|
|
logical, intent(in) :: is_SplitDipole |
103 |
|
|
logical, intent(in) :: is_Quadrupole |
104 |
|
|
integer, intent(out) :: status |
105 |
|
|
integer :: nAtypes, myATID, i, j |
106 |
|
|
|
107 |
|
|
status = 0 |
108 |
|
|
myATID = getFirstMatchingElement(atypes, "c_ident", c_ident) |
109 |
|
|
|
110 |
|
|
!! Be simple-minded and assume that we need an ElectrostaticMap that |
111 |
|
|
!! is the same size as the total number of atom types |
112 |
|
|
|
113 |
|
|
if (.not.allocated(ElectrostaticMap)) then |
114 |
|
|
|
115 |
|
|
nAtypes = getSize(atypes) |
116 |
|
|
|
117 |
|
|
if (nAtypes == 0) then |
118 |
|
|
status = -1 |
119 |
|
|
return |
120 |
|
|
end if |
121 |
|
|
|
122 |
|
|
if (.not. allocated(ElectrostaticMap)) then |
123 |
|
|
allocate(ElectrostaticMap(nAtypes)) |
124 |
|
|
endif |
125 |
|
|
|
126 |
|
|
end if |
127 |
|
|
|
128 |
|
|
if (myATID .gt. size(ElectrostaticMap)) then |
129 |
|
|
status = -1 |
130 |
|
|
return |
131 |
|
|
endif |
132 |
|
|
|
133 |
|
|
! set the values for ElectrostaticMap for this atom type: |
134 |
|
|
|
135 |
|
|
ElectrostaticMap(myATID)%c_ident = c_ident |
136 |
|
|
ElectrostaticMap(myATID)%is_Charge = is_Charge |
137 |
|
|
ElectrostaticMap(myATID)%is_Dipole = is_Dipole |
138 |
|
|
ElectrostaticMap(myATID)%is_SplitDipole = is_SplitDipole |
139 |
|
|
ElectrostaticMap(myATID)%is_Quadrupole = is_Quadrupole |
140 |
|
|
|
141 |
|
|
end subroutine newElectrostaticType |
142 |
|
|
|
143 |
|
|
subroutine setCharge(c_ident, charge, status) |
144 |
|
|
integer, intent(in) :: c_ident |
145 |
|
|
real(kind=dp), intent(in) :: charge |
146 |
|
|
integer, intent(out) :: status |
147 |
|
|
integer :: myATID |
148 |
|
|
|
149 |
|
|
status = 0 |
150 |
|
|
myATID = getFirstMatchingElement(atypes, "c_ident", c_ident) |
151 |
|
|
|
152 |
|
|
if (.not.allocated(ElectrostaticMap)) then |
153 |
|
|
call handleError("electrostatic", "no ElectrostaticMap was present before first call of setCharge!") |
154 |
|
|
status = -1 |
155 |
|
|
return |
156 |
|
|
end if |
157 |
|
|
|
158 |
|
|
if (myATID .gt. size(ElectrostaticMap)) then |
159 |
|
|
call handleError("electrostatic", "ElectrostaticMap was found to be too small during setCharge!") |
160 |
|
|
status = -1 |
161 |
|
|
return |
162 |
|
|
endif |
163 |
|
|
|
164 |
|
|
if (.not.ElectrostaticMap(myATID)%is_Charge) then |
165 |
|
|
call handleError("electrostatic", "Attempt to setCharge of an atom type that is not a charge!") |
166 |
|
|
status = -1 |
167 |
|
|
return |
168 |
|
|
endif |
169 |
|
|
|
170 |
|
|
ElectrostaticMap(myATID)%charge = charge |
171 |
|
|
end subroutine setCharge |
172 |
|
|
|
173 |
|
|
subroutine setDipoleMoment(c_ident, dipole_moment, status) |
174 |
|
|
integer, intent(in) :: c_ident |
175 |
|
|
real(kind=dp), intent(in) :: dipole_moment |
176 |
|
|
integer, intent(out) :: status |
177 |
|
|
integer :: myATID |
178 |
|
|
|
179 |
|
|
status = 0 |
180 |
|
|
myATID = getFirstMatchingElement(atypes, "c_ident", c_ident) |
181 |
|
|
|
182 |
|
|
if (.not.allocated(ElectrostaticMap)) then |
183 |
|
|
call handleError("electrostatic", "no ElectrostaticMap was present before first call of setDipoleMoment!") |
184 |
|
|
status = -1 |
185 |
|
|
return |
186 |
|
|
end if |
187 |
|
|
|
188 |
|
|
if (myATID .gt. size(ElectrostaticMap)) then |
189 |
|
|
call handleError("electrostatic", "ElectrostaticMap was found to be too small during setDipoleMoment!") |
190 |
|
|
status = -1 |
191 |
|
|
return |
192 |
|
|
endif |
193 |
|
|
|
194 |
|
|
if (.not.ElectrostaticMap(myATID)%is_Dipole) then |
195 |
|
|
call handleError("electrostatic", "Attempt to setDipoleMoment of an atom type that is not a dipole!") |
196 |
|
|
status = -1 |
197 |
|
|
return |
198 |
|
|
endif |
199 |
|
|
|
200 |
|
|
ElectrostaticMap(myATID)%dipole_moment = dipole_moment |
201 |
|
|
end subroutine setDipoleMoment |
202 |
|
|
|
203 |
|
|
subroutine setSplitDipoleDistance(c_ident, split_dipole_distance, status) |
204 |
|
|
integer, intent(in) :: c_ident |
205 |
|
|
real(kind=dp), intent(in) :: split_dipole_distance |
206 |
|
|
integer, intent(out) :: status |
207 |
|
|
integer :: myATID |
208 |
|
|
|
209 |
|
|
status = 0 |
210 |
|
|
myATID = getFirstMatchingElement(atypes, "c_ident", c_ident) |
211 |
|
|
|
212 |
|
|
if (.not.allocated(ElectrostaticMap)) then |
213 |
|
|
call handleError("electrostatic", "no ElectrostaticMap was present before first call of setSplitDipoleDistance!") |
214 |
|
|
status = -1 |
215 |
|
|
return |
216 |
|
|
end if |
217 |
|
|
|
218 |
|
|
if (myATID .gt. size(ElectrostaticMap)) then |
219 |
|
|
call handleError("electrostatic", "ElectrostaticMap was found to be too small during setSplitDipoleDistance!") |
220 |
|
|
status = -1 |
221 |
|
|
return |
222 |
|
|
endif |
223 |
|
|
|
224 |
|
|
if (.not.ElectrostaticMap(myATID)%is_SplitDipole) then |
225 |
|
|
call handleError("electrostatic", "Attempt to setSplitDipoleDistance of an atom type that is not a splitDipole!") |
226 |
|
|
status = -1 |
227 |
|
|
return |
228 |
|
|
endif |
229 |
|
|
|
230 |
|
|
ElectrostaticMap(myATID)%split_dipole_distance = split_dipole_distance |
231 |
|
|
end subroutine setSplitDipoleDistance |
232 |
|
|
|
233 |
|
|
subroutine setQuadrupoleMoments(c_ident, quadrupole_moments, status) |
234 |
|
|
integer, intent(in) :: c_ident |
235 |
|
|
real(kind=dp), intent(in), dimension(3) :: quadrupole_moments |
236 |
|
|
integer, intent(out) :: status |
237 |
|
|
integer :: myATID, i, j |
238 |
|
|
|
239 |
|
|
status = 0 |
240 |
|
|
myATID = getFirstMatchingElement(atypes, "c_ident", c_ident) |
241 |
|
|
|
242 |
|
|
if (.not.allocated(ElectrostaticMap)) then |
243 |
|
|
call handleError("electrostatic", "no ElectrostaticMap was present before first call of setQuadrupoleMoments!") |
244 |
|
|
status = -1 |
245 |
|
|
return |
246 |
|
|
end if |
247 |
|
|
|
248 |
|
|
if (myATID .gt. size(ElectrostaticMap)) then |
249 |
|
|
call handleError("electrostatic", "ElectrostaticMap was found to be too small during setQuadrupoleMoments!") |
250 |
|
|
status = -1 |
251 |
|
|
return |
252 |
|
|
endif |
253 |
|
|
|
254 |
|
|
if (.not.ElectrostaticMap(myATID)%is_Quadrupole) then |
255 |
|
|
call handleError("electrostatic", "Attempt to setQuadrupoleMoments of an atom type that is not a quadrupole!") |
256 |
|
|
status = -1 |
257 |
|
|
return |
258 |
|
|
endif |
259 |
|
|
|
260 |
|
|
do i = 1, 3 |
261 |
|
|
ElectrostaticMap(myATID)%quadrupole_moments(i) = & |
262 |
|
|
quadrupole_moments(i) |
263 |
|
|
enddo |
264 |
|
|
|
265 |
|
|
end subroutine setQuadrupoleMoments |
266 |
|
|
|
267 |
|
|
|
268 |
|
|
function getCharge(atid) result (c) |
269 |
|
|
integer, intent(in) :: atid |
270 |
|
|
integer :: localError |
271 |
|
|
real(kind=dp) :: c |
272 |
|
|
|
273 |
|
|
if (.not.allocated(ElectrostaticMap)) then |
274 |
|
|
call handleError("electrostatic", "no ElectrostaticMap was present before first call of getCharge!") |
275 |
|
|
return |
276 |
|
|
end if |
277 |
|
|
|
278 |
|
|
if (.not.ElectrostaticMap(atid)%is_Charge) then |
279 |
|
|
call handleError("electrostatic", "getCharge was called for an atom type that isn't a charge!") |
280 |
|
|
return |
281 |
|
|
endif |
282 |
|
|
|
283 |
|
|
c = ElectrostaticMap(atid)%charge |
284 |
|
|
end function getCharge |
285 |
|
|
|
286 |
|
|
function getDipoleMoment(atid) result (dm) |
287 |
|
|
integer, intent(in) :: atid |
288 |
|
|
integer :: localError |
289 |
|
|
real(kind=dp) :: dm |
290 |
|
|
|
291 |
|
|
if (.not.allocated(ElectrostaticMap)) then |
292 |
|
|
call handleError("electrostatic", "no ElectrostaticMap was present before first call of getDipoleMoment!") |
293 |
|
|
return |
294 |
|
|
end if |
295 |
|
|
|
296 |
|
|
if (.not.ElectrostaticMap(atid)%is_Dipole) then |
297 |
|
|
call handleError("electrostatic", "getDipoleMoment was called for an atom type that isn't a dipole!") |
298 |
|
|
return |
299 |
|
|
endif |
300 |
|
|
|
301 |
|
|
dm = ElectrostaticMap(atid)%dipole_moment |
302 |
|
|
end function getDipoleMoment |
303 |
|
|
|
304 |
|
|
subroutine doElectrostaticPair(atom1, atom2, d, rij, r2, sw, & |
305 |
|
|
vpair, fpair, pot, eFrame, f, t, do_pot) |
306 |
|
|
|
307 |
|
|
logical, intent(in) :: do_pot |
308 |
|
|
|
309 |
|
|
integer, intent(in) :: atom1, atom2 |
310 |
|
|
integer :: localError |
311 |
|
|
|
312 |
|
|
real(kind=dp), intent(in) :: rij, r2, sw |
313 |
|
|
real(kind=dp), intent(in), dimension(3) :: d |
314 |
|
|
real(kind=dp), intent(inout) :: vpair |
315 |
|
|
real(kind=dp), intent(inout), dimension(3) :: fpair |
316 |
|
|
|
317 |
|
|
real( kind = dp ) :: pot |
318 |
|
|
real( kind = dp ), dimension(9,nLocal) :: eFrame |
319 |
|
|
real( kind = dp ), dimension(3,nLocal) :: f |
320 |
|
|
real( kind = dp ), dimension(3,nLocal) :: t |
321 |
|
|
|
322 |
gezelter |
439 |
real (kind = dp), dimension(3) :: ux_i, uy_i, uz_i |
323 |
|
|
real (kind = dp), dimension(3) :: ux_j, uy_j, uz_j |
324 |
|
|
real (kind = dp), dimension(3) :: dudux_i, duduy_i, duduz_i |
325 |
|
|
real (kind = dp), dimension(3) :: dudux_j, duduy_j, duduz_j |
326 |
gezelter |
411 |
|
327 |
|
|
logical :: i_is_Charge, i_is_Dipole, i_is_SplitDipole, i_is_Quadrupole |
328 |
|
|
logical :: j_is_Charge, j_is_Dipole, j_is_SplitDipole, j_is_Quadrupole |
329 |
|
|
integer :: me1, me2, id1, id2 |
330 |
|
|
real (kind=dp) :: q_i, q_j, mu_i, mu_j, d_i, d_j |
331 |
gezelter |
439 |
real (kind=dp) :: qxx_i, qyy_i, qzz_i |
332 |
|
|
real (kind=dp) :: qxx_j, qyy_j, qzz_j |
333 |
|
|
real (kind=dp) :: cx_i, cy_i, cz_i |
334 |
|
|
real (kind=dp) :: cx_j, cy_j, cz_j |
335 |
|
|
real (kind=dp) :: cx2, cy2, cz2 |
336 |
gezelter |
411 |
real (kind=dp) :: ct_i, ct_j, ct_ij, a1 |
337 |
gezelter |
421 |
real (kind=dp) :: riji, ri, ri2, ri3, ri4 |
338 |
gezelter |
411 |
real (kind=dp) :: pref, vterm, epot, dudr |
339 |
gezelter |
421 |
real (kind=dp) :: xhat, yhat, zhat |
340 |
gezelter |
411 |
real (kind=dp) :: dudx, dudy, dudz |
341 |
|
|
real (kind=dp) :: drdxj, drdyj, drdzj |
342 |
gezelter |
421 |
real (kind=dp) :: scale, sc2, bigR |
343 |
gezelter |
411 |
|
344 |
|
|
if (.not.allocated(ElectrostaticMap)) then |
345 |
|
|
call handleError("electrostatic", "no ElectrostaticMap was present before first call of do_electrostatic_pair!") |
346 |
|
|
return |
347 |
|
|
end if |
348 |
|
|
|
349 |
|
|
#ifdef IS_MPI |
350 |
|
|
me1 = atid_Row(atom1) |
351 |
|
|
me2 = atid_Col(atom2) |
352 |
|
|
#else |
353 |
|
|
me1 = atid(atom1) |
354 |
|
|
me2 = atid(atom2) |
355 |
|
|
#endif |
356 |
|
|
|
357 |
|
|
!! some variables we'll need independent of electrostatic type: |
358 |
|
|
|
359 |
|
|
riji = 1.0d0 / rij |
360 |
|
|
|
361 |
gezelter |
421 |
xhat = d(1) * riji |
362 |
|
|
yhat = d(2) * riji |
363 |
|
|
zhat = d(3) * riji |
364 |
gezelter |
411 |
|
365 |
gezelter |
421 |
drdxj = xhat |
366 |
|
|
drdyj = yhat |
367 |
|
|
drdzj = zhat |
368 |
gezelter |
411 |
|
369 |
|
|
!! logicals |
370 |
|
|
|
371 |
|
|
i_is_Charge = ElectrostaticMap(me1)%is_Charge |
372 |
|
|
i_is_Dipole = ElectrostaticMap(me1)%is_Dipole |
373 |
|
|
i_is_SplitDipole = ElectrostaticMap(me1)%is_SplitDipole |
374 |
|
|
i_is_Quadrupole = ElectrostaticMap(me1)%is_Quadrupole |
375 |
|
|
|
376 |
|
|
j_is_Charge = ElectrostaticMap(me2)%is_Charge |
377 |
|
|
j_is_Dipole = ElectrostaticMap(me2)%is_Dipole |
378 |
|
|
j_is_SplitDipole = ElectrostaticMap(me2)%is_SplitDipole |
379 |
|
|
j_is_Quadrupole = ElectrostaticMap(me2)%is_Quadrupole |
380 |
|
|
|
381 |
|
|
if (i_is_Charge) then |
382 |
|
|
q_i = ElectrostaticMap(me1)%charge |
383 |
|
|
endif |
384 |
|
|
|
385 |
|
|
if (i_is_Dipole) then |
386 |
|
|
mu_i = ElectrostaticMap(me1)%dipole_moment |
387 |
|
|
#ifdef IS_MPI |
388 |
gezelter |
439 |
uz_i(1) = eFrame_Row(3,atom1) |
389 |
|
|
uz_i(2) = eFrame_Row(6,atom1) |
390 |
|
|
uz_i(3) = eFrame_Row(9,atom1) |
391 |
gezelter |
411 |
#else |
392 |
gezelter |
439 |
uz_i(1) = eFrame(3,atom1) |
393 |
|
|
uz_i(2) = eFrame(6,atom1) |
394 |
|
|
uz_i(3) = eFrame(9,atom1) |
395 |
gezelter |
411 |
#endif |
396 |
gezelter |
439 |
ct_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat |
397 |
gezelter |
411 |
|
398 |
|
|
if (i_is_SplitDipole) then |
399 |
|
|
d_i = ElectrostaticMap(me1)%split_dipole_distance |
400 |
|
|
endif |
401 |
|
|
|
402 |
|
|
endif |
403 |
|
|
|
404 |
gezelter |
439 |
if (i_is_Quadrupole) then |
405 |
|
|
qxx_i = ElectrostaticMap(me1)%quadrupole_moments(1) |
406 |
|
|
qyy_i = ElectrostaticMap(me1)%quadrupole_moments(2) |
407 |
|
|
qzz_i = ElectrostaticMap(me1)%quadrupole_moments(3) |
408 |
|
|
#ifdef IS_MPI |
409 |
|
|
ux_i(1) = eFrame_Row(1,atom1) |
410 |
|
|
ux_i(2) = eFrame_Row(4,atom1) |
411 |
|
|
ux_i(3) = eFrame_Row(7,atom1) |
412 |
|
|
uy_i(1) = eFrame_Row(2,atom1) |
413 |
|
|
uy_i(2) = eFrame_Row(5,atom1) |
414 |
|
|
uy_i(3) = eFrame_Row(8,atom1) |
415 |
|
|
uz_i(1) = eFrame_Row(3,atom1) |
416 |
|
|
uz_i(2) = eFrame_Row(6,atom1) |
417 |
|
|
uz_i(3) = eFrame_Row(9,atom1) |
418 |
|
|
#else |
419 |
|
|
ux_i(1) = eFrame(1,atom1) |
420 |
|
|
ux_i(2) = eFrame(4,atom1) |
421 |
|
|
ux_i(3) = eFrame(7,atom1) |
422 |
|
|
uy_i(1) = eFrame(2,atom1) |
423 |
|
|
uy_i(2) = eFrame(5,atom1) |
424 |
|
|
uy_i(3) = eFrame(8,atom1) |
425 |
|
|
uz_i(1) = eFrame(3,atom1) |
426 |
|
|
uz_i(2) = eFrame(6,atom1) |
427 |
|
|
uz_i(3) = eFrame(9,atom1) |
428 |
|
|
#endif |
429 |
|
|
cx_i = ux_i(1)*xhat + ux_i(2)*yhat + ux_i(3)*zhat |
430 |
|
|
cy_i = uy_i(1)*xhat + uy_i(2)*yhat + uy_i(3)*zhat |
431 |
|
|
cz_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat |
432 |
|
|
endif |
433 |
|
|
|
434 |
|
|
|
435 |
gezelter |
411 |
if (j_is_Charge) then |
436 |
|
|
q_j = ElectrostaticMap(me2)%charge |
437 |
|
|
endif |
438 |
|
|
|
439 |
|
|
if (j_is_Dipole) then |
440 |
|
|
mu_j = ElectrostaticMap(me2)%dipole_moment |
441 |
|
|
#ifdef IS_MPI |
442 |
gezelter |
439 |
uz_j(1) = eFrame_Col(3,atom2) |
443 |
|
|
uz_j(2) = eFrame_Col(6,atom2) |
444 |
|
|
uz_j(3) = eFrame_Col(9,atom2) |
445 |
gezelter |
411 |
#else |
446 |
gezelter |
439 |
uz_j(1) = eFrame(3,atom2) |
447 |
|
|
uz_j(2) = eFrame(6,atom2) |
448 |
|
|
uz_j(3) = eFrame(9,atom2) |
449 |
gezelter |
411 |
#endif |
450 |
gezelter |
439 |
ct_j = uz_j(1)*drdxj + uz_j(2)*drdyj + uz_j(3)*drdzj |
451 |
gezelter |
411 |
|
452 |
|
|
if (j_is_SplitDipole) then |
453 |
|
|
d_j = ElectrostaticMap(me2)%split_dipole_distance |
454 |
|
|
endif |
455 |
|
|
endif |
456 |
|
|
|
457 |
gezelter |
439 |
if (j_is_Quadrupole) then |
458 |
|
|
qxx_j = ElectrostaticMap(me2)%quadrupole_moments(1) |
459 |
|
|
qyy_j = ElectrostaticMap(me2)%quadrupole_moments(2) |
460 |
|
|
qzz_j = ElectrostaticMap(me2)%quadrupole_moments(3) |
461 |
|
|
#ifdef IS_MPI |
462 |
|
|
ux_j(1) = eFrame_Col(1,atom2) |
463 |
|
|
ux_j(2) = eFrame_Col(4,atom2) |
464 |
|
|
ux_j(3) = eFrame_Col(7,atom2) |
465 |
|
|
uy_j(1) = eFrame_Col(2,atom2) |
466 |
|
|
uy_j(2) = eFrame_Col(5,atom2) |
467 |
|
|
uy_j(3) = eFrame_Col(8,atom2) |
468 |
|
|
uz_j(1) = eFrame_Col(3,atom2) |
469 |
|
|
uz_j(2) = eFrame_Col(6,atom2) |
470 |
|
|
uz_j(3) = eFrame_Col(9,atom2) |
471 |
|
|
#else |
472 |
|
|
ux_j(1) = eFrame(1,atom2) |
473 |
|
|
ux_j(2) = eFrame(4,atom2) |
474 |
|
|
ux_j(3) = eFrame(7,atom2) |
475 |
|
|
uy_j(1) = eFrame(2,atom2) |
476 |
|
|
uy_j(2) = eFrame(5,atom2) |
477 |
|
|
uy_j(3) = eFrame(8,atom2) |
478 |
|
|
uz_j(1) = eFrame(3,atom2) |
479 |
|
|
uz_j(2) = eFrame(6,atom2) |
480 |
|
|
uz_j(3) = eFrame(9,atom2) |
481 |
|
|
#endif |
482 |
|
|
cx_j = ux_j(1)*xhat + ux_j(2)*yhat + ux_j(3)*zhat |
483 |
|
|
cy_j = uy_j(1)*xhat + uy_j(2)*yhat + uy_j(3)*zhat |
484 |
|
|
cz_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat |
485 |
|
|
endif |
486 |
|
|
|
487 |
gezelter |
411 |
epot = 0.0_dp |
488 |
|
|
dudx = 0.0_dp |
489 |
|
|
dudy = 0.0_dp |
490 |
|
|
dudz = 0.0_dp |
491 |
|
|
|
492 |
gezelter |
439 |
dudux_i = 0.0_dp |
493 |
|
|
duduy_i = 0.0_dp |
494 |
|
|
duduz_i = 0.0_dp |
495 |
gezelter |
411 |
|
496 |
gezelter |
439 |
dudux_j = 0.0_dp |
497 |
|
|
duduy_j = 0.0_dp |
498 |
|
|
duduz_j = 0.0_dp |
499 |
gezelter |
411 |
|
500 |
|
|
if (i_is_Charge) then |
501 |
|
|
|
502 |
|
|
if (j_is_Charge) then |
503 |
|
|
|
504 |
|
|
vterm = pre11 * q_i * q_j * riji |
505 |
|
|
vpair = vpair + vterm |
506 |
|
|
epot = epot + sw*vterm |
507 |
|
|
|
508 |
|
|
dudr = - sw * vterm * riji |
509 |
|
|
|
510 |
|
|
dudx = dudx + dudr * drdxj |
511 |
|
|
dudy = dudy + dudr * drdyj |
512 |
|
|
dudz = dudz + dudr * drdzj |
513 |
|
|
|
514 |
|
|
endif |
515 |
|
|
|
516 |
|
|
if (j_is_Dipole) then |
517 |
|
|
|
518 |
gezelter |
421 |
if (j_is_SplitDipole) then |
519 |
|
|
BigR = sqrt(r2 + 0.25_dp * d_j * d_j) |
520 |
|
|
ri = 1.0_dp / BigR |
521 |
|
|
scale = rij * ri |
522 |
|
|
else |
523 |
|
|
ri = riji |
524 |
|
|
scale = 1.0_dp |
525 |
|
|
endif |
526 |
gezelter |
411 |
|
527 |
gezelter |
421 |
ri2 = ri * ri |
528 |
|
|
ri3 = ri2 * ri |
529 |
|
|
sc2 = scale * scale |
530 |
|
|
|
531 |
gezelter |
411 |
pref = pre12 * q_i * mu_j |
532 |
gezelter |
421 |
vterm = pref * ct_j * ri2 * scale |
533 |
gezelter |
411 |
vpair = vpair + vterm |
534 |
|
|
epot = epot + sw * vterm |
535 |
|
|
|
536 |
gezelter |
421 |
!! this has a + sign in the () because the rij vector is |
537 |
|
|
!! r_j - r_i and the charge-dipole potential takes the origin |
538 |
|
|
!! as the point dipole, which is atom j in this case. |
539 |
gezelter |
411 |
|
540 |
gezelter |
439 |
dudx = dudx + pref * sw * ri3 * ( uz_j(1) + 3.0d0*ct_j*xhat*sc2) |
541 |
|
|
dudy = dudy + pref * sw * ri3 * ( uz_j(2) + 3.0d0*ct_j*yhat*sc2) |
542 |
|
|
dudz = dudz + pref * sw * ri3 * ( uz_j(3) + 3.0d0*ct_j*zhat*sc2) |
543 |
gezelter |
421 |
|
544 |
gezelter |
439 |
duduz_j(1) = duduz_j(1) - pref * sw * ri2 * xhat * scale |
545 |
|
|
duduz_j(2) = duduz_j(2) - pref * sw * ri2 * yhat * scale |
546 |
|
|
duduz_j(3) = duduz_j(3) - pref * sw * ri2 * zhat * scale |
547 |
gezelter |
411 |
|
548 |
|
|
endif |
549 |
gezelter |
421 |
|
550 |
gezelter |
439 |
if (j_is_Quadrupole) then |
551 |
|
|
ri2 = riji * riji |
552 |
|
|
ri3 = ri2 * riji |
553 |
gezelter |
440 |
ri4 = ri2 * ri2 |
554 |
gezelter |
439 |
cx2 = cx_j * cx_j |
555 |
|
|
cy2 = cy_j * cy_j |
556 |
|
|
cz2 = cz_j * cz_j |
557 |
|
|
|
558 |
gezelter |
443 |
|
559 |
|
|
pref = pre14 * q_i / 6.0_dp |
560 |
gezelter |
439 |
vterm = pref * ri3 * (qxx_j * (3.0_dp*cx2 - 1.0_dp) + & |
561 |
|
|
qyy_j * (3.0_dp*cy2 - 1.0_dp) + & |
562 |
|
|
qzz_j * (3.0_dp*cz2 - 1.0_dp)) |
563 |
|
|
vpair = vpair + vterm |
564 |
|
|
epot = epot + sw * vterm |
565 |
|
|
|
566 |
|
|
dudx = dudx - 5.0_dp*sw*vterm*riji*xhat - pref * sw * ri4 * ( & |
567 |
|
|
qxx_j*(6.0_dp*cx_j*ux_j(1) - 2.0_dp*xhat) + & |
568 |
|
|
qyy_j*(6.0_dp*cy_j*uy_j(1) - 2.0_dp*xhat) + & |
569 |
|
|
qzz_j*(6.0_dp*cz_j*uz_j(1) - 2.0_dp*xhat) ) |
570 |
|
|
dudy = dudy - 5.0_dp*sw*vterm*riji*yhat - pref * sw * ri4 * ( & |
571 |
|
|
qxx_j*(6.0_dp*cx_j*ux_j(2) - 2.0_dp*yhat) + & |
572 |
|
|
qyy_j*(6.0_dp*cy_j*uy_j(2) - 2.0_dp*yhat) + & |
573 |
|
|
qzz_j*(6.0_dp*cz_j*uz_j(2) - 2.0_dp*yhat) ) |
574 |
|
|
dudz = dudz - 5.0_dp*sw*vterm*riji*zhat - pref * sw * ri4 * ( & |
575 |
|
|
qxx_j*(6.0_dp*cx_j*ux_j(3) - 2.0_dp*zhat) + & |
576 |
|
|
qyy_j*(6.0_dp*cy_j*uy_j(3) - 2.0_dp*zhat) + & |
577 |
|
|
qzz_j*(6.0_dp*cz_j*uz_j(3) - 2.0_dp*zhat) ) |
578 |
|
|
|
579 |
|
|
dudux_j(1) = dudux_j(1) + pref * sw * ri3 * (qxx_j*6.0_dp*cx_j*xhat) |
580 |
|
|
dudux_j(2) = dudux_j(2) + pref * sw * ri3 * (qxx_j*6.0_dp*cx_j*yhat) |
581 |
|
|
dudux_j(3) = dudux_j(3) + pref * sw * ri3 * (qxx_j*6.0_dp*cx_j*zhat) |
582 |
|
|
|
583 |
|
|
duduy_j(1) = duduy_j(1) + pref * sw * ri3 * (qyy_j*6.0_dp*cy_j*xhat) |
584 |
|
|
duduy_j(2) = duduy_j(2) + pref * sw * ri3 * (qyy_j*6.0_dp*cy_j*yhat) |
585 |
|
|
duduy_j(3) = duduy_j(3) + pref * sw * ri3 * (qyy_j*6.0_dp*cy_j*zhat) |
586 |
|
|
|
587 |
|
|
duduz_j(1) = duduz_j(1) + pref * sw * ri3 * (qzz_j*6.0_dp*cz_j*xhat) |
588 |
|
|
duduz_j(2) = duduz_j(2) + pref * sw * ri3 * (qzz_j*6.0_dp*cz_j*yhat) |
589 |
|
|
duduz_j(3) = duduz_j(3) + pref * sw * ri3 * (qzz_j*6.0_dp*cz_j*zhat) |
590 |
|
|
endif |
591 |
|
|
|
592 |
gezelter |
411 |
endif |
593 |
|
|
|
594 |
|
|
if (i_is_Dipole) then |
595 |
|
|
|
596 |
|
|
if (j_is_Charge) then |
597 |
|
|
|
598 |
gezelter |
421 |
if (i_is_SplitDipole) then |
599 |
|
|
BigR = sqrt(r2 + 0.25_dp * d_i * d_i) |
600 |
|
|
ri = 1.0_dp / BigR |
601 |
|
|
scale = rij * ri |
602 |
|
|
else |
603 |
|
|
ri = riji |
604 |
|
|
scale = 1.0_dp |
605 |
|
|
endif |
606 |
gezelter |
411 |
|
607 |
gezelter |
421 |
ri2 = ri * ri |
608 |
|
|
ri3 = ri2 * ri |
609 |
|
|
sc2 = scale * scale |
610 |
|
|
|
611 |
gezelter |
411 |
pref = pre12 * q_j * mu_i |
612 |
gezelter |
421 |
vterm = pref * ct_i * ri2 * scale |
613 |
gezelter |
411 |
vpair = vpair + vterm |
614 |
|
|
epot = epot + sw * vterm |
615 |
|
|
|
616 |
gezelter |
439 |
dudx = dudx + pref * sw * ri3 * ( uz_i(1) - 3.0d0 * ct_i * xhat*sc2) |
617 |
|
|
dudy = dudy + pref * sw * ri3 * ( uz_i(2) - 3.0d0 * ct_i * yhat*sc2) |
618 |
|
|
dudz = dudz + pref * sw * ri3 * ( uz_i(3) - 3.0d0 * ct_i * zhat*sc2) |
619 |
gezelter |
411 |
|
620 |
gezelter |
439 |
duduz_i(1) = duduz_i(1) + pref * sw * ri2 * xhat * scale |
621 |
|
|
duduz_i(2) = duduz_i(2) + pref * sw * ri2 * yhat * scale |
622 |
|
|
duduz_i(3) = duduz_i(3) + pref * sw * ri2 * zhat * scale |
623 |
gezelter |
411 |
endif |
624 |
|
|
|
625 |
|
|
if (j_is_Dipole) then |
626 |
|
|
|
627 |
gezelter |
421 |
if (i_is_SplitDipole) then |
628 |
|
|
if (j_is_SplitDipole) then |
629 |
|
|
BigR = sqrt(r2 + 0.25_dp * d_i * d_i + 0.25_dp * d_j * d_j) |
630 |
|
|
else |
631 |
|
|
BigR = sqrt(r2 + 0.25_dp * d_i * d_i) |
632 |
|
|
endif |
633 |
|
|
ri = 1.0_dp / BigR |
634 |
|
|
scale = rij * ri |
635 |
|
|
else |
636 |
|
|
if (j_is_SplitDipole) then |
637 |
|
|
BigR = sqrt(r2 + 0.25_dp * d_j * d_j) |
638 |
|
|
ri = 1.0_dp / BigR |
639 |
|
|
scale = rij * ri |
640 |
|
|
else |
641 |
|
|
ri = riji |
642 |
|
|
scale = 1.0_dp |
643 |
|
|
endif |
644 |
|
|
endif |
645 |
|
|
|
646 |
gezelter |
439 |
ct_ij = uz_i(1)*uz_j(1) + uz_i(2)*uz_j(2) + uz_i(3)*uz_j(3) |
647 |
gezelter |
421 |
|
648 |
|
|
ri2 = ri * ri |
649 |
|
|
ri3 = ri2 * ri |
650 |
gezelter |
411 |
ri4 = ri2 * ri2 |
651 |
gezelter |
421 |
sc2 = scale * scale |
652 |
gezelter |
411 |
|
653 |
|
|
pref = pre22 * mu_i * mu_j |
654 |
gezelter |
421 |
vterm = pref * ri3 * (ct_ij - 3.0d0 * ct_i * ct_j * sc2) |
655 |
gezelter |
411 |
vpair = vpair + vterm |
656 |
|
|
epot = epot + sw * vterm |
657 |
|
|
|
658 |
gezelter |
421 |
a1 = 5.0d0 * ct_i * ct_j * sc2 - ct_ij |
659 |
gezelter |
411 |
|
660 |
gezelter |
439 |
dudx=dudx+pref*sw*3.0d0*ri4*scale*(a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1)) |
661 |
|
|
dudy=dudy+pref*sw*3.0d0*ri4*scale*(a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2)) |
662 |
|
|
dudz=dudz+pref*sw*3.0d0*ri4*scale*(a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3)) |
663 |
gezelter |
411 |
|
664 |
gezelter |
439 |
duduz_i(1) = duduz_i(1) + pref*sw*ri3*(uz_j(1) - 3.0d0*ct_j*xhat*sc2) |
665 |
|
|
duduz_i(2) = duduz_i(2) + pref*sw*ri3*(uz_j(2) - 3.0d0*ct_j*yhat*sc2) |
666 |
|
|
duduz_i(3) = duduz_i(3) + pref*sw*ri3*(uz_j(3) - 3.0d0*ct_j*zhat*sc2) |
667 |
gezelter |
411 |
|
668 |
gezelter |
439 |
duduz_j(1) = duduz_j(1) + pref*sw*ri3*(uz_i(1) - 3.0d0*ct_i*xhat*sc2) |
669 |
|
|
duduz_j(2) = duduz_j(2) + pref*sw*ri3*(uz_i(2) - 3.0d0*ct_i*yhat*sc2) |
670 |
|
|
duduz_j(3) = duduz_j(3) + pref*sw*ri3*(uz_i(3) - 3.0d0*ct_i*zhat*sc2) |
671 |
gezelter |
411 |
endif |
672 |
|
|
|
673 |
|
|
endif |
674 |
gezelter |
439 |
|
675 |
|
|
if (i_is_Quadrupole) then |
676 |
|
|
if (j_is_Charge) then |
677 |
|
|
|
678 |
|
|
ri2 = riji * riji |
679 |
|
|
ri3 = ri2 * riji |
680 |
gezelter |
440 |
ri4 = ri2 * ri2 |
681 |
gezelter |
439 |
cx2 = cx_i * cx_i |
682 |
|
|
cy2 = cy_i * cy_i |
683 |
|
|
cz2 = cz_i * cz_i |
684 |
|
|
|
685 |
gezelter |
440 |
pref = pre14 * q_j / 6.0_dp |
686 |
gezelter |
439 |
vterm = pref * ri3 * (qxx_i * (3.0_dp*cx2 - 1.0_dp) + & |
687 |
|
|
qyy_i * (3.0_dp*cy2 - 1.0_dp) + & |
688 |
|
|
qzz_i * (3.0_dp*cz2 - 1.0_dp)) |
689 |
|
|
vpair = vpair + vterm |
690 |
|
|
epot = epot + sw * vterm |
691 |
|
|
|
692 |
|
|
dudx = dudx - 5.0_dp*sw*vterm*riji*xhat - pref * sw * ri4 * ( & |
693 |
|
|
qxx_i*(6.0_dp*cx_i*ux_i(1) - 2.0_dp*xhat) + & |
694 |
|
|
qyy_i*(6.0_dp*cy_i*uy_i(1) - 2.0_dp*xhat) + & |
695 |
|
|
qzz_i*(6.0_dp*cz_i*uz_i(1) - 2.0_dp*xhat) ) |
696 |
|
|
dudy = dudy - 5.0_dp*sw*vterm*riji*yhat - pref * sw * ri4 * ( & |
697 |
|
|
qxx_i*(6.0_dp*cx_i*ux_i(2) - 2.0_dp*yhat) + & |
698 |
|
|
qyy_i*(6.0_dp*cy_i*uy_i(2) - 2.0_dp*yhat) + & |
699 |
|
|
qzz_i*(6.0_dp*cz_i*uz_i(2) - 2.0_dp*yhat) ) |
700 |
|
|
dudz = dudz - 5.0_dp*sw*vterm*riji*zhat - pref * sw * ri4 * ( & |
701 |
|
|
qxx_i*(6.0_dp*cx_i*ux_i(3) - 2.0_dp*zhat) + & |
702 |
|
|
qyy_i*(6.0_dp*cy_i*uy_i(3) - 2.0_dp*zhat) + & |
703 |
|
|
qzz_i*(6.0_dp*cz_i*uz_i(3) - 2.0_dp*zhat) ) |
704 |
|
|
|
705 |
|
|
dudux_i(1) = dudux_i(1) + pref * sw * ri3 * (qxx_i*6.0_dp*cx_i*xhat) |
706 |
|
|
dudux_i(2) = dudux_i(2) + pref * sw * ri3 * (qxx_i*6.0_dp*cx_i*yhat) |
707 |
|
|
dudux_i(3) = dudux_i(3) + pref * sw * ri3 * (qxx_i*6.0_dp*cx_i*zhat) |
708 |
|
|
|
709 |
|
|
duduy_i(1) = duduy_i(1) + pref * sw * ri3 * (qyy_i*6.0_dp*cy_i*xhat) |
710 |
|
|
duduy_i(2) = duduy_i(2) + pref * sw * ri3 * (qyy_i*6.0_dp*cy_i*yhat) |
711 |
|
|
duduy_i(3) = duduy_i(3) + pref * sw * ri3 * (qyy_i*6.0_dp*cy_i*zhat) |
712 |
|
|
|
713 |
|
|
duduz_i(1) = duduz_i(1) + pref * sw * ri3 * (qzz_i*6.0_dp*cz_i*xhat) |
714 |
|
|
duduz_i(2) = duduz_i(2) + pref * sw * ri3 * (qzz_i*6.0_dp*cz_i*yhat) |
715 |
|
|
duduz_i(3) = duduz_i(3) + pref * sw * ri3 * (qzz_i*6.0_dp*cz_i*zhat) |
716 |
|
|
endif |
717 |
|
|
endif |
718 |
|
|
|
719 |
gezelter |
411 |
|
720 |
|
|
if (do_pot) then |
721 |
|
|
#ifdef IS_MPI |
722 |
|
|
pot_row(atom1) = pot_row(atom1) + 0.5d0*epot |
723 |
|
|
pot_col(atom2) = pot_col(atom2) + 0.5d0*epot |
724 |
|
|
#else |
725 |
|
|
pot = pot + epot |
726 |
|
|
#endif |
727 |
|
|
endif |
728 |
|
|
|
729 |
|
|
#ifdef IS_MPI |
730 |
|
|
f_Row(1,atom1) = f_Row(1,atom1) + dudx |
731 |
|
|
f_Row(2,atom1) = f_Row(2,atom1) + dudy |
732 |
|
|
f_Row(3,atom1) = f_Row(3,atom1) + dudz |
733 |
|
|
|
734 |
|
|
f_Col(1,atom2) = f_Col(1,atom2) - dudx |
735 |
|
|
f_Col(2,atom2) = f_Col(2,atom2) - dudy |
736 |
|
|
f_Col(3,atom2) = f_Col(3,atom2) - dudz |
737 |
|
|
|
738 |
|
|
if (i_is_Dipole .or. i_is_Quadrupole) then |
739 |
gezelter |
439 |
t_Row(1,atom1)=t_Row(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2) |
740 |
|
|
t_Row(2,atom1)=t_Row(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3) |
741 |
|
|
t_Row(3,atom1)=t_Row(3,atom1) - uz_i(1)*duduz_i(2) + uz_i(2)*duduz_i(1) |
742 |
gezelter |
411 |
endif |
743 |
gezelter |
439 |
if (i_is_Quadrupole) then |
744 |
|
|
t_Row(1,atom1)=t_Row(1,atom1) - ux_i(2)*dudux_i(3) + ux_i(3)*dudux_i(2) |
745 |
|
|
t_Row(2,atom1)=t_Row(2,atom1) - ux_i(3)*dudux_i(1) + ux_i(1)*dudux_i(3) |
746 |
|
|
t_Row(3,atom1)=t_Row(3,atom1) - ux_i(1)*dudux_i(2) + ux_i(2)*dudux_i(1) |
747 |
gezelter |
411 |
|
748 |
gezelter |
439 |
t_Row(1,atom1)=t_Row(1,atom1) - uy_i(2)*duduy_i(3) + uy_i(3)*duduy_i(2) |
749 |
|
|
t_Row(2,atom1)=t_Row(2,atom1) - uy_i(3)*duduy_i(1) + uy_i(1)*duduy_i(3) |
750 |
|
|
t_Row(3,atom1)=t_Row(3,atom1) - uy_i(1)*duduy_i(2) + uy_i(2)*duduy_i(1) |
751 |
|
|
endif |
752 |
|
|
|
753 |
gezelter |
411 |
if (j_is_Dipole .or. j_is_Quadrupole) then |
754 |
gezelter |
439 |
t_Col(1,atom2)=t_Col(1,atom2) - uz_j(2)*duduz_j(3) + uz_j(3)*duduz_j(2) |
755 |
|
|
t_Col(2,atom2)=t_Col(2,atom2) - uz_j(3)*duduz_j(1) + uz_j(1)*duduz_j(3) |
756 |
|
|
t_Col(3,atom2)=t_Col(3,atom2) - uz_j(1)*duduz_j(2) + uz_j(2)*duduz_j(1) |
757 |
gezelter |
411 |
endif |
758 |
gezelter |
439 |
if (j_is_Quadrupole) then |
759 |
|
|
t_Col(1,atom2)=t_Col(1,atom2) - ux_j(2)*dudux_j(3) + ux_j(3)*dudux_j(2) |
760 |
|
|
t_Col(2,atom2)=t_Col(2,atom2) - ux_j(3)*dudux_j(1) + ux_j(1)*dudux_j(3) |
761 |
|
|
t_Col(3,atom2)=t_Col(3,atom2) - ux_j(1)*dudux_j(2) + ux_j(2)*dudux_j(1) |
762 |
gezelter |
411 |
|
763 |
gezelter |
439 |
t_Col(1,atom2)=t_Col(1,atom2) - uy_j(2)*duduy_j(3) + uy_j(3)*duduy_j(2) |
764 |
|
|
t_Col(2,atom2)=t_Col(2,atom2) - uy_j(3)*duduy_j(1) + uy_j(1)*duduy_j(3) |
765 |
|
|
t_Col(3,atom2)=t_Col(3,atom2) - uy_j(1)*duduy_j(2) + uy_j(2)*duduy_j(1) |
766 |
|
|
endif |
767 |
|
|
|
768 |
gezelter |
411 |
#else |
769 |
|
|
f(1,atom1) = f(1,atom1) + dudx |
770 |
|
|
f(2,atom1) = f(2,atom1) + dudy |
771 |
|
|
f(3,atom1) = f(3,atom1) + dudz |
772 |
|
|
|
773 |
|
|
f(1,atom2) = f(1,atom2) - dudx |
774 |
|
|
f(2,atom2) = f(2,atom2) - dudy |
775 |
|
|
f(3,atom2) = f(3,atom2) - dudz |
776 |
|
|
|
777 |
|
|
if (i_is_Dipole .or. i_is_Quadrupole) then |
778 |
gezelter |
439 |
t(1,atom1)=t(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2) |
779 |
|
|
t(2,atom1)=t(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3) |
780 |
|
|
t(3,atom1)=t(3,atom1) - uz_i(1)*duduz_i(2) + uz_i(2)*duduz_i(1) |
781 |
gezelter |
411 |
endif |
782 |
gezelter |
439 |
if (i_is_Quadrupole) then |
783 |
|
|
t(1,atom1)=t(1,atom1) - ux_i(2)*dudux_i(3) + ux_i(3)*dudux_i(2) |
784 |
|
|
t(2,atom1)=t(2,atom1) - ux_i(3)*dudux_i(1) + ux_i(1)*dudux_i(3) |
785 |
|
|
t(3,atom1)=t(3,atom1) - ux_i(1)*dudux_i(2) + ux_i(2)*dudux_i(1) |
786 |
|
|
|
787 |
|
|
t(1,atom1)=t(1,atom1) - uy_i(2)*duduy_i(3) + uy_i(3)*duduy_i(2) |
788 |
|
|
t(2,atom1)=t(2,atom1) - uy_i(3)*duduy_i(1) + uy_i(1)*duduy_i(3) |
789 |
|
|
t(3,atom1)=t(3,atom1) - uy_i(1)*duduy_i(2) + uy_i(2)*duduy_i(1) |
790 |
|
|
endif |
791 |
|
|
|
792 |
gezelter |
411 |
if (j_is_Dipole .or. j_is_Quadrupole) then |
793 |
gezelter |
439 |
t(1,atom2)=t(1,atom2) - uz_j(2)*duduz_j(3) + uz_j(3)*duduz_j(2) |
794 |
|
|
t(2,atom2)=t(2,atom2) - uz_j(3)*duduz_j(1) + uz_j(1)*duduz_j(3) |
795 |
|
|
t(3,atom2)=t(3,atom2) - uz_j(1)*duduz_j(2) + uz_j(2)*duduz_j(1) |
796 |
gezelter |
411 |
endif |
797 |
gezelter |
439 |
if (j_is_Quadrupole) then |
798 |
|
|
t(1,atom2)=t(1,atom2) - ux_j(2)*dudux_j(3) + ux_j(3)*dudux_j(2) |
799 |
|
|
t(2,atom2)=t(2,atom2) - ux_j(3)*dudux_j(1) + ux_j(1)*dudux_j(3) |
800 |
|
|
t(3,atom2)=t(3,atom2) - ux_j(1)*dudux_j(2) + ux_j(2)*dudux_j(1) |
801 |
|
|
|
802 |
|
|
t(1,atom2)=t(1,atom2) - uy_j(2)*duduy_j(3) + uy_j(3)*duduy_j(2) |
803 |
|
|
t(2,atom2)=t(2,atom2) - uy_j(3)*duduy_j(1) + uy_j(1)*duduy_j(3) |
804 |
|
|
t(3,atom2)=t(3,atom2) - uy_j(1)*duduy_j(2) + uy_j(2)*duduy_j(1) |
805 |
|
|
endif |
806 |
|
|
|
807 |
gezelter |
411 |
#endif |
808 |
|
|
|
809 |
|
|
#ifdef IS_MPI |
810 |
|
|
id1 = AtomRowToGlobal(atom1) |
811 |
|
|
id2 = AtomColToGlobal(atom2) |
812 |
|
|
#else |
813 |
|
|
id1 = atom1 |
814 |
|
|
id2 = atom2 |
815 |
|
|
#endif |
816 |
|
|
|
817 |
|
|
if (molMembershipList(id1) .ne. molMembershipList(id2)) then |
818 |
|
|
|
819 |
|
|
fpair(1) = fpair(1) + dudx |
820 |
|
|
fpair(2) = fpair(2) + dudy |
821 |
|
|
fpair(3) = fpair(3) + dudz |
822 |
|
|
|
823 |
|
|
endif |
824 |
|
|
|
825 |
|
|
return |
826 |
|
|
end subroutine doElectrostaticPair |
827 |
|
|
|
828 |
|
|
end module electrostatic_module |