1 |
/*<html><pre> -<a href="qh-geom.htm" |
2 |
>-------------------------------</a><a name="TOP">-</a> |
3 |
|
4 |
|
5 |
geom2.c |
6 |
infrequently used geometric routines of qhull |
7 |
|
8 |
see qh-geom.htm and geom.h |
9 |
|
10 |
copyright (c) 1993-2003 The Geometry Center |
11 |
|
12 |
frequently used code goes into geom.c |
13 |
*/ |
14 |
|
15 |
#include "QuickHull/qhull_a.h" |
16 |
|
17 |
/*================== functions in alphabetic order ============*/ |
18 |
|
19 |
/*-<a href="qh-geom.htm#TOC" |
20 |
>-------------------------------</a><a name="copypoints">-</a> |
21 |
|
22 |
qh_copypoints( points, numpoints, dimension) |
23 |
return malloc'd copy of points |
24 |
*/ |
25 |
coordT *qh_copypoints (coordT *points, int numpoints, int dimension) { |
26 |
int size; |
27 |
coordT *newpoints; |
28 |
|
29 |
size= numpoints * dimension * sizeof(coordT); |
30 |
if (!(newpoints=(coordT*)malloc(size))) { |
31 |
fprintf(qh ferr, "qhull error: insufficient memory to copy %d points\n", |
32 |
numpoints); |
33 |
qh_errexit(qh_ERRmem, NULL, NULL); |
34 |
} |
35 |
memcpy ((char *)newpoints, (char *)points, size); |
36 |
return newpoints; |
37 |
} /* copypoints */ |
38 |
|
39 |
/*-<a href="qh-geom.htm#TOC" |
40 |
>-------------------------------</a><a name="crossproduct">-</a> |
41 |
|
42 |
qh_crossproduct( dim, vecA, vecB, vecC ) |
43 |
crossproduct of 2 dim vectors |
44 |
C= A x B |
45 |
|
46 |
notes: |
47 |
from Glasner, Graphics Gems I, p. 639 |
48 |
only defined for dim==3 |
49 |
*/ |
50 |
void qh_crossproduct (int dim, realT vecA[3], realT vecB[3], realT vecC[3]){ |
51 |
|
52 |
if (dim == 3) { |
53 |
vecC[0]= det2_(vecA[1], vecA[2], vecB[1], vecB[2]); |
54 |
vecC[1]= - det2_(vecA[0], vecA[2], vecB[0], vecB[2]); |
55 |
vecC[2]= det2_(vecA[0], vecA[1], vecB[0], vecB[1]); |
56 |
} |
57 |
} /* vcross */ |
58 |
|
59 |
/*-<a href="qh-geom.htm#TOC" |
60 |
>-------------------------------</a><a name="determinant">-</a> |
61 |
|
62 |
qh_determinant( rows, dim, nearzero ) |
63 |
compute signed determinant of a square matrix |
64 |
uses qh.NEARzero to test for degenerate matrices |
65 |
|
66 |
returns: |
67 |
determinant |
68 |
overwrites rows and the matrix |
69 |
if dim == 2 or 3 |
70 |
nearzero iff determinant < qh NEARzero[dim-1] |
71 |
(not quite correct, not critical) |
72 |
if dim >= 4 |
73 |
nearzero iff diagonal[k] < qh NEARzero[k] |
74 |
*/ |
75 |
realT qh_determinant (realT **rows, int dim, boolT *nearzero) { |
76 |
realT det=0; |
77 |
int i; |
78 |
boolT sign= False; |
79 |
|
80 |
*nearzero= False; |
81 |
if (dim < 2) { |
82 |
fprintf (qh ferr, "qhull internal error (qh_determinate): only implemented for dimension >= 2\n"); |
83 |
qh_errexit (qh_ERRqhull, NULL, NULL); |
84 |
}else if (dim == 2) { |
85 |
det= det2_(rows[0][0], rows[0][1], rows[1][0], rows[1][1]); |
86 |
if (fabs_(det) < qh NEARzero[1]) /* not really correct, what should this be? */ |
87 |
*nearzero= True; |
88 |
}else if (dim == 3) { |
89 |
det= det3_(rows[0][0], rows[0][1], rows[0][2], rows[1][0], rows[1][1], rows[1][2], rows[2][0], rows[2][1], rows[2][2]); |
90 |
if (fabs_(det) < qh NEARzero[2]) /* not really correct, what should this be? */ |
91 |
*nearzero= True; |
92 |
}else { |
93 |
qh_gausselim(rows, dim, dim, &sign, nearzero); /* if nearzero, diagonal still ok*/ |
94 |
det= 1.0; |
95 |
for (i= dim; i--; ) |
96 |
det *= (rows[i])[i]; |
97 |
if (sign) |
98 |
det= -det; |
99 |
} |
100 |
return det; |
101 |
} /* determinant */ |
102 |
|
103 |
/*-<a href="qh-geom.htm#TOC" |
104 |
>-------------------------------</a><a name="detjoggle">-</a> |
105 |
|
106 |
qh_detjoggle( points, numpoints, dimension ) |
107 |
determine default max joggle for point array |
108 |
as qh_distround * qh_JOGGLEdefault |
109 |
|
110 |
returns: |
111 |
initial value for JOGGLEmax from points and REALepsilon |
112 |
|
113 |
notes: |
114 |
computes DISTround since qh_maxmin not called yet |
115 |
if qh SCALElast, last dimension will be scaled later to MAXwidth |
116 |
|
117 |
loop duplicated from qh_maxmin |
118 |
*/ |
119 |
realT qh_detjoggle (pointT *points, int numpoints, int dimension) { |
120 |
realT abscoord, distround, joggle, maxcoord, mincoord; |
121 |
pointT *point, *pointtemp; |
122 |
realT maxabs= -REALmax; |
123 |
realT sumabs= 0; |
124 |
realT maxwidth= 0; |
125 |
int k; |
126 |
|
127 |
for (k= 0; k < dimension; k++) { |
128 |
if (qh SCALElast && k == dimension-1) |
129 |
abscoord= maxwidth; |
130 |
else if (qh DELAUNAY && k == dimension-1) /* will qh_setdelaunay() */ |
131 |
abscoord= 2 * maxabs * maxabs; /* may be low by qh hull_dim/2 */ |
132 |
else { |
133 |
maxcoord= -REALmax; |
134 |
mincoord= REALmax; |
135 |
FORALLpoint_(points, numpoints) { |
136 |
maximize_(maxcoord, point[k]); |
137 |
minimize_(mincoord, point[k]); |
138 |
} |
139 |
maximize_(maxwidth, maxcoord-mincoord); |
140 |
abscoord= fmax_(maxcoord, -mincoord); |
141 |
} |
142 |
sumabs += abscoord; |
143 |
maximize_(maxabs, abscoord); |
144 |
} /* for k */ |
145 |
distround= qh_distround (qh hull_dim, maxabs, sumabs); |
146 |
joggle= distround * qh_JOGGLEdefault; |
147 |
maximize_(joggle, REALepsilon * qh_JOGGLEdefault); |
148 |
trace2((qh ferr, "qh_detjoggle: joggle=%2.2g maxwidth=%2.2g\n", joggle, maxwidth)); |
149 |
return joggle; |
150 |
} /* detjoggle */ |
151 |
|
152 |
/*-<a href="qh-geom.htm#TOC" |
153 |
>-------------------------------</a><a name="detroundoff">-</a> |
154 |
|
155 |
qh_detroundoff() |
156 |
determine maximum roundoff errors from |
157 |
REALepsilon, REALmax, REALmin, qh.hull_dim, qh.MAXabs_coord, |
158 |
qh.MAXsumcoord, qh.MAXwidth, qh.MINdenom_1 |
159 |
|
160 |
accounts for qh.SETroundoff, qh.RANDOMdist, qh MERGEexact |
161 |
qh.premerge_cos, qh.postmerge_cos, qh.premerge_centrum, |
162 |
qh.postmerge_centrum, qh.MINoutside, |
163 |
qh_RATIOnearinside, qh_COPLANARratio, qh_WIDEcoplanar |
164 |
|
165 |
returns: |
166 |
sets qh.DISTround, etc. (see below) |
167 |
appends precision constants to qh.qhull_options |
168 |
|
169 |
see: |
170 |
qh_maxmin() for qh.NEARzero |
171 |
|
172 |
design: |
173 |
determine qh.DISTround for distance computations |
174 |
determine minimum denominators for qh_divzero |
175 |
determine qh.ANGLEround for angle computations |
176 |
adjust qh.premerge_cos,... for roundoff error |
177 |
determine qh.ONEmerge for maximum error due to a single merge |
178 |
determine qh.NEARinside, qh.MAXcoplanar, qh.MINvisible, |
179 |
qh.MINoutside, qh.WIDEfacet |
180 |
initialize qh.max_vertex and qh.minvertex |
181 |
*/ |
182 |
void qh_detroundoff (void) { |
183 |
|
184 |
qh_option ("_max-width", NULL, &qh MAXwidth); |
185 |
if (!qh SETroundoff) { |
186 |
qh DISTround= qh_distround (qh hull_dim, qh MAXabs_coord, qh MAXsumcoord); |
187 |
if (qh RANDOMdist) |
188 |
qh DISTround += qh RANDOMfactor * qh MAXabs_coord; |
189 |
qh_option ("Error-roundoff", NULL, &qh DISTround); |
190 |
} |
191 |
qh MINdenom= qh MINdenom_1 * qh MAXabs_coord; |
192 |
qh MINdenom_1_2= sqrt (qh MINdenom_1 * qh hull_dim) ; /* if will be normalized */ |
193 |
qh MINdenom_2= qh MINdenom_1_2 * qh MAXabs_coord; |
194 |
/* for inner product */ |
195 |
qh ANGLEround= 1.01 * qh hull_dim * REALepsilon; |
196 |
if (qh RANDOMdist) |
197 |
qh ANGLEround += qh RANDOMfactor; |
198 |
if (qh premerge_cos < REALmax/2) { |
199 |
qh premerge_cos -= qh ANGLEround; |
200 |
if (qh RANDOMdist) |
201 |
qh_option ("Angle-premerge-with-random", NULL, &qh premerge_cos); |
202 |
} |
203 |
if (qh postmerge_cos < REALmax/2) { |
204 |
qh postmerge_cos -= qh ANGLEround; |
205 |
if (qh RANDOMdist) |
206 |
qh_option ("Angle-postmerge-with-random", NULL, &qh postmerge_cos); |
207 |
} |
208 |
qh premerge_centrum += 2 * qh DISTround; /*2 for centrum and distplane()*/ |
209 |
qh postmerge_centrum += 2 * qh DISTround; |
210 |
if (qh RANDOMdist && (qh MERGEexact || qh PREmerge)) |
211 |
qh_option ("Centrum-premerge-with-random", NULL, &qh premerge_centrum); |
212 |
if (qh RANDOMdist && qh POSTmerge) |
213 |
qh_option ("Centrum-postmerge-with-random", NULL, &qh postmerge_centrum); |
214 |
{ /* compute ONEmerge, max vertex offset for merging simplicial facets */ |
215 |
realT maxangle= 1.0, maxrho; |
216 |
|
217 |
minimize_(maxangle, qh premerge_cos); |
218 |
minimize_(maxangle, qh postmerge_cos); |
219 |
/* max diameter * sin theta + DISTround for vertex to its hyperplane */ |
220 |
qh ONEmerge= sqrt (qh hull_dim) * qh MAXwidth * |
221 |
sqrt (1.0 - maxangle * maxangle) + qh DISTround; |
222 |
maxrho= qh hull_dim * qh premerge_centrum + qh DISTround; |
223 |
maximize_(qh ONEmerge, maxrho); |
224 |
maxrho= qh hull_dim * qh postmerge_centrum + qh DISTround; |
225 |
maximize_(qh ONEmerge, maxrho); |
226 |
if (qh MERGING) |
227 |
qh_option ("_one-merge", NULL, &qh ONEmerge); |
228 |
} |
229 |
qh NEARinside= qh ONEmerge * qh_RATIOnearinside; /* only used if qh KEEPnearinside */ |
230 |
if (qh JOGGLEmax < REALmax/2 && (qh KEEPcoplanar || qh KEEPinside)) { |
231 |
realT maxdist; /* adjust qh.NEARinside for joggle */ |
232 |
qh KEEPnearinside= True; |
233 |
maxdist= sqrt (qh hull_dim) * qh JOGGLEmax + qh DISTround; |
234 |
maxdist= 2*maxdist; /* vertex and coplanar point can joggle in opposite directions */ |
235 |
maximize_(qh NEARinside, maxdist); /* must agree with qh_nearcoplanar() */ |
236 |
} |
237 |
if (qh KEEPnearinside) |
238 |
qh_option ("_near-inside", NULL, &qh NEARinside); |
239 |
if (qh JOGGLEmax < qh DISTround) { |
240 |
fprintf (qh ferr, "qhull error: the joggle for 'QJn', %.2g, is below roundoff for distance computations, %.2g\n", |
241 |
qh JOGGLEmax, qh DISTround); |
242 |
qh_errexit (qh_ERRinput, NULL, NULL); |
243 |
} |
244 |
if (qh MINvisible > REALmax/2) { |
245 |
if (!qh MERGING) |
246 |
qh MINvisible= qh DISTround; |
247 |
else if (qh hull_dim <= 3) |
248 |
qh MINvisible= qh premerge_centrum; |
249 |
else |
250 |
qh MINvisible= qh_COPLANARratio * qh premerge_centrum; |
251 |
if (qh APPROXhull && qh MINvisible > qh MINoutside) |
252 |
qh MINvisible= qh MINoutside; |
253 |
qh_option ("Visible-distance", NULL, &qh MINvisible); |
254 |
} |
255 |
if (qh MAXcoplanar > REALmax/2) { |
256 |
qh MAXcoplanar= qh MINvisible; |
257 |
qh_option ("U-coplanar-distance", NULL, &qh MAXcoplanar); |
258 |
} |
259 |
if (!qh APPROXhull) { /* user may specify qh MINoutside */ |
260 |
qh MINoutside= 2 * qh MINvisible; |
261 |
if (qh premerge_cos < REALmax/2) |
262 |
maximize_(qh MINoutside, (1- qh premerge_cos) * qh MAXabs_coord); |
263 |
qh_option ("Width-outside", NULL, &qh MINoutside); |
264 |
} |
265 |
qh WIDEfacet= qh MINoutside; |
266 |
maximize_(qh WIDEfacet, qh_WIDEcoplanar * qh MAXcoplanar); |
267 |
maximize_(qh WIDEfacet, qh_WIDEcoplanar * qh MINvisible); |
268 |
qh_option ("_wide-facet", NULL, &qh WIDEfacet); |
269 |
if (qh MINvisible > qh MINoutside + 3 * REALepsilon |
270 |
&& !qh BESToutside && !qh FORCEoutput) |
271 |
fprintf (qh ferr, "qhull input warning: minimum visibility V%.2g is greater than \nminimum outside W%.2g. Flipped facets are likely.\n", |
272 |
qh MINvisible, qh MINoutside); |
273 |
qh max_vertex= qh DISTround; |
274 |
qh min_vertex= -qh DISTround; |
275 |
/* numeric constants reported in printsummary */ |
276 |
} /* detroundoff */ |
277 |
|
278 |
/*-<a href="qh-geom.htm#TOC" |
279 |
>-------------------------------</a><a name="detsimplex">-</a> |
280 |
|
281 |
qh_detsimplex( apex, points, dim, nearzero ) |
282 |
compute determinant of a simplex with point apex and base points |
283 |
|
284 |
returns: |
285 |
signed determinant and nearzero from qh_determinant |
286 |
|
287 |
notes: |
288 |
uses qh.gm_matrix/qh.gm_row (assumes they're big enough) |
289 |
|
290 |
design: |
291 |
construct qm_matrix by subtracting apex from points |
292 |
compute determinate |
293 |
*/ |
294 |
realT qh_detsimplex(pointT *apex, setT *points, int dim, boolT *nearzero) { |
295 |
pointT *coorda, *coordp, *gmcoord, *point, **pointp; |
296 |
coordT **rows; |
297 |
int k, i=0; |
298 |
realT det; |
299 |
|
300 |
zinc_(Zdetsimplex); |
301 |
gmcoord= qh gm_matrix; |
302 |
rows= qh gm_row; |
303 |
FOREACHpoint_(points) { |
304 |
if (i == dim) |
305 |
break; |
306 |
rows[i++]= gmcoord; |
307 |
coordp= point; |
308 |
coorda= apex; |
309 |
for (k= dim; k--; ) |
310 |
*(gmcoord++)= *coordp++ - *coorda++; |
311 |
} |
312 |
if (i < dim) { |
313 |
fprintf (qh ferr, "qhull internal error (qh_detsimplex): #points %d < dimension %d\n", |
314 |
i, dim); |
315 |
qh_errexit (qh_ERRqhull, NULL, NULL); |
316 |
} |
317 |
det= qh_determinant (rows, dim, nearzero); |
318 |
trace2((qh ferr, "qh_detsimplex: det=%2.2g for point p%d, dim %d, nearzero? %d\n", det, qh_pointid(apex), dim, *nearzero)); |
319 |
return det; |
320 |
} /* detsimplex */ |
321 |
|
322 |
/*-<a href="qh-geom.htm#TOC" |
323 |
>-------------------------------</a><a name="distnorm">-</a> |
324 |
|
325 |
qh_distnorm( dim, point, normal, offset ) |
326 |
return distance from point to hyperplane at normal/offset |
327 |
|
328 |
returns: |
329 |
dist |
330 |
|
331 |
notes: |
332 |
dist > 0 if point is outside of hyperplane |
333 |
|
334 |
see: |
335 |
qh_distplane in geom.c |
336 |
*/ |
337 |
realT qh_distnorm (int dim, pointT *point, pointT *normal, realT *offsetp) { |
338 |
coordT *normalp= normal, *coordp= point; |
339 |
realT dist; |
340 |
int k; |
341 |
|
342 |
dist= *offsetp; |
343 |
for (k= dim; k--; ) |
344 |
dist += *(coordp++) * *(normalp++); |
345 |
return dist; |
346 |
} /* distnorm */ |
347 |
|
348 |
/*-<a href="qh-geom.htm#TOC" |
349 |
>-------------------------------</a><a name="distround">-</a> |
350 |
|
351 |
qh_distround ( dimension, maxabs, maxsumabs ) |
352 |
compute maximum round-off error for a distance computation |
353 |
to a normalized hyperplane |
354 |
maxabs is the maximum absolute value of a coordinate |
355 |
maxsumabs is the maximum possible sum of absolute coordinate values |
356 |
|
357 |
returns: |
358 |
max dist round for REALepsilon |
359 |
|
360 |
notes: |
361 |
calculate roundoff error according to |
362 |
Lemma 3.2-1 of Golub and van Loan "Matrix Computation" |
363 |
please use sqrt(dim) since one vector is normalized |
364 |
or use maxsumabs since one vector is < 1 |
365 |
*/ |
366 |
realT qh_distround (int dimension, realT maxabs, realT maxsumabs) { |
367 |
realT maxdistsum, maxround; |
368 |
|
369 |
maxdistsum= sqrt (dimension) * maxabs; |
370 |
minimize_( maxdistsum, maxsumabs); |
371 |
maxround= REALepsilon * (dimension * maxdistsum * 1.01 + maxabs); |
372 |
/* adds maxabs for offset */ |
373 |
trace4((qh ferr, "qh_distround: %2.2g maxabs %2.2g maxsumabs %2.2g maxdistsum %2.2g\n", maxround, maxabs, maxsumabs, maxdistsum)); |
374 |
return maxround; |
375 |
} /* distround */ |
376 |
|
377 |
/*-<a href="qh-geom.htm#TOC" |
378 |
>-------------------------------</a><a name="divzero">-</a> |
379 |
|
380 |
qh_divzero( numer, denom, mindenom1, zerodiv ) |
381 |
divide by a number that's nearly zero |
382 |
mindenom1= minimum denominator for dividing into 1.0 |
383 |
|
384 |
returns: |
385 |
quotient |
386 |
sets zerodiv and returns 0.0 if it would overflow |
387 |
|
388 |
design: |
389 |
if numer is nearly zero and abs(numer) < abs(denom) |
390 |
return numer/denom |
391 |
else if numer is nearly zero |
392 |
return 0 and zerodiv |
393 |
else if denom/numer non-zero |
394 |
return numer/denom |
395 |
else |
396 |
return 0 and zerodiv |
397 |
*/ |
398 |
realT qh_divzero (realT numer, realT denom, realT mindenom1, boolT *zerodiv) { |
399 |
realT temp, numerx, denomx; |
400 |
|
401 |
|
402 |
if (numer < mindenom1 && numer > -mindenom1) { |
403 |
numerx= fabs_(numer); |
404 |
denomx= fabs_(denom); |
405 |
if (numerx < denomx) { |
406 |
*zerodiv= False; |
407 |
return numer/denom; |
408 |
}else { |
409 |
*zerodiv= True; |
410 |
return 0.0; |
411 |
} |
412 |
} |
413 |
temp= denom/numer; |
414 |
if (temp > mindenom1 || temp < -mindenom1) { |
415 |
*zerodiv= False; |
416 |
return numer/denom; |
417 |
}else { |
418 |
*zerodiv= True; |
419 |
return 0.0; |
420 |
} |
421 |
} /* divzero */ |
422 |
|
423 |
|
424 |
/*-<a href="qh-geom.htm#TOC" |
425 |
>-------------------------------</a><a name="facetarea">-</a> |
426 |
|
427 |
qh_facetarea( facet ) |
428 |
return area for a facet |
429 |
|
430 |
notes: |
431 |
if non-simplicial, |
432 |
uses centrum to triangulate facet and sums the projected areas. |
433 |
if (qh DELAUNAY), |
434 |
computes projected area instead for last coordinate |
435 |
assumes facet->normal exists |
436 |
projecting tricoplanar facets to the hyperplane does not appear to make a difference |
437 |
|
438 |
design: |
439 |
if simplicial |
440 |
compute area |
441 |
else |
442 |
for each ridge |
443 |
compute area from centrum to ridge |
444 |
negate area if upper Delaunay facet |
445 |
*/ |
446 |
realT qh_facetarea (facetT *facet) { |
447 |
vertexT *apex; |
448 |
pointT *centrum; |
449 |
realT area= 0.0; |
450 |
ridgeT *ridge, **ridgep; |
451 |
|
452 |
if (facet->simplicial) { |
453 |
apex= SETfirstt_(facet->vertices, vertexT); |
454 |
area= qh_facetarea_simplex (qh hull_dim, apex->point, facet->vertices, |
455 |
apex, facet->toporient, facet->normal, &facet->offset); |
456 |
}else { |
457 |
if (qh CENTERtype == qh_AScentrum) |
458 |
centrum= facet->center; |
459 |
else |
460 |
centrum= qh_getcentrum (facet); |
461 |
FOREACHridge_(facet->ridges) |
462 |
area += qh_facetarea_simplex (qh hull_dim, centrum, ridge->vertices, |
463 |
NULL, (ridge->top == facet), facet->normal, &facet->offset); |
464 |
if (qh CENTERtype != qh_AScentrum) |
465 |
qh_memfree (centrum, qh normal_size); |
466 |
} |
467 |
if (facet->upperdelaunay && qh DELAUNAY) |
468 |
area= -area; /* the normal should be [0,...,1] */ |
469 |
trace4((qh ferr, "qh_facetarea: f%d area %2.2g\n", facet->id, area)); |
470 |
return area; |
471 |
} /* facetarea */ |
472 |
|
473 |
/*-<a href="qh-geom.htm#TOC" |
474 |
>-------------------------------</a><a name="facetarea_simplex">-</a> |
475 |
|
476 |
qh_facetarea_simplex( dim, apex, vertices, notvertex, toporient, normal, offset ) |
477 |
return area for a simplex defined by |
478 |
an apex, a base of vertices, an orientation, and a unit normal |
479 |
if simplicial or tricoplanar facet, |
480 |
notvertex is defined and it is skipped in vertices |
481 |
|
482 |
returns: |
483 |
computes area of simplex projected to plane [normal,offset] |
484 |
returns 0 if vertex too far below plane (qh WIDEfacet) |
485 |
vertex can't be apex of tricoplanar facet |
486 |
|
487 |
notes: |
488 |
if (qh DELAUNAY), |
489 |
computes projected area instead for last coordinate |
490 |
uses qh gm_matrix/gm_row and qh hull_dim |
491 |
helper function for qh_facetarea |
492 |
|
493 |
design: |
494 |
if Notvertex |
495 |
translate simplex to apex |
496 |
else |
497 |
project simplex to normal/offset |
498 |
translate simplex to apex |
499 |
if Delaunay |
500 |
set last row/column to 0 with -1 on diagonal |
501 |
else |
502 |
set last row to Normal |
503 |
compute determinate |
504 |
scale and flip sign for area |
505 |
*/ |
506 |
realT qh_facetarea_simplex (int dim, coordT *apex, setT *vertices, |
507 |
vertexT *notvertex, boolT toporient, coordT *normal, realT *offset) { |
508 |
pointT *coorda, *coordp, *gmcoord; |
509 |
coordT **rows, *normalp; |
510 |
int k, i=0; |
511 |
realT area, dist; |
512 |
vertexT *vertex, **vertexp; |
513 |
boolT nearzero; |
514 |
|
515 |
gmcoord= qh gm_matrix; |
516 |
rows= qh gm_row; |
517 |
FOREACHvertex_(vertices) { |
518 |
if (vertex == notvertex) |
519 |
continue; |
520 |
rows[i++]= gmcoord; |
521 |
coorda= apex; |
522 |
coordp= vertex->point; |
523 |
normalp= normal; |
524 |
if (notvertex) { |
525 |
for (k= dim; k--; ) |
526 |
*(gmcoord++)= *coordp++ - *coorda++; |
527 |
}else { |
528 |
dist= *offset; |
529 |
for (k= dim; k--; ) |
530 |
dist += *coordp++ * *normalp++; |
531 |
if (dist < -qh WIDEfacet) { |
532 |
zinc_(Znoarea); |
533 |
return 0.0; |
534 |
} |
535 |
coordp= vertex->point; |
536 |
normalp= normal; |
537 |
for (k= dim; k--; ) |
538 |
*(gmcoord++)= (*coordp++ - dist * *normalp++) - *coorda++; |
539 |
} |
540 |
} |
541 |
if (i != dim-1) { |
542 |
fprintf (qh ferr, "qhull internal error (qh_facetarea_simplex): #points %d != dim %d -1\n", |
543 |
i, dim); |
544 |
qh_errexit (qh_ERRqhull, NULL, NULL); |
545 |
} |
546 |
rows[i]= gmcoord; |
547 |
if (qh DELAUNAY) { |
548 |
for (i= 0; i < dim-1; i++) |
549 |
rows[i][dim-1]= 0.0; |
550 |
for (k= dim; k--; ) |
551 |
*(gmcoord++)= 0.0; |
552 |
rows[dim-1][dim-1]= -1.0; |
553 |
}else { |
554 |
normalp= normal; |
555 |
for (k= dim; k--; ) |
556 |
*(gmcoord++)= *normalp++; |
557 |
} |
558 |
zinc_(Zdetsimplex); |
559 |
area= qh_determinant (rows, dim, &nearzero); |
560 |
if (toporient) |
561 |
area= -area; |
562 |
area *= qh AREAfactor; |
563 |
trace4((qh ferr, "qh_facetarea_simplex: area=%2.2g for point p%d, toporient %d, nearzero? %d\n", area, qh_pointid(apex), toporient, nearzero)); |
564 |
return area; |
565 |
} /* facetarea_simplex */ |
566 |
|
567 |
/*-<a href="qh-geom.htm#TOC" |
568 |
>-------------------------------</a><a name="facetcenter">-</a> |
569 |
|
570 |
qh_facetcenter( vertices ) |
571 |
return Voronoi center (Voronoi vertex) for a facet's vertices |
572 |
|
573 |
returns: |
574 |
return temporary point equal to the center |
575 |
|
576 |
see: |
577 |
qh_voronoi_center() |
578 |
*/ |
579 |
pointT *qh_facetcenter (setT *vertices) { |
580 |
setT *points= qh_settemp (qh_setsize (vertices)); |
581 |
vertexT *vertex, **vertexp; |
582 |
pointT *center; |
583 |
|
584 |
FOREACHvertex_(vertices) |
585 |
qh_setappend (&points, vertex->point); |
586 |
center= qh_voronoi_center (qh hull_dim-1, points); |
587 |
qh_settempfree (&points); |
588 |
return center; |
589 |
} /* facetcenter */ |
590 |
|
591 |
/*-<a href="qh-geom.htm#TOC" |
592 |
>-------------------------------</a><a name="findgooddist">-</a> |
593 |
|
594 |
qh_findgooddist( point, facetA, dist, facetlist ) |
595 |
find best good facet visible for point from facetA |
596 |
assumes facetA is visible from point |
597 |
|
598 |
returns: |
599 |
best facet, i.e., good facet that is furthest from point |
600 |
distance to best facet |
601 |
NULL if none |
602 |
|
603 |
moves good, visible facets (and some other visible facets) |
604 |
to end of qh facet_list |
605 |
|
606 |
notes: |
607 |
uses qh visit_id |
608 |
|
609 |
design: |
610 |
initialize bestfacet if facetA is good |
611 |
move facetA to end of facetlist |
612 |
for each facet on facetlist |
613 |
for each unvisited neighbor of facet |
614 |
move visible neighbors to end of facetlist |
615 |
update best good neighbor |
616 |
if no good neighbors, update best facet |
617 |
*/ |
618 |
facetT *qh_findgooddist (pointT *point, facetT *facetA, realT *distp, |
619 |
facetT **facetlist) { |
620 |
realT bestdist= -REALmax, dist; |
621 |
facetT *neighbor, **neighborp, *bestfacet=NULL, *facet; |
622 |
boolT goodseen= False; |
623 |
|
624 |
if (facetA->good) { |
625 |
zinc_(Zcheckpart); /* calls from check_bestdist occur after print stats */ |
626 |
qh_distplane (point, facetA, &bestdist); |
627 |
bestfacet= facetA; |
628 |
goodseen= True; |
629 |
} |
630 |
qh_removefacet (facetA); |
631 |
qh_appendfacet (facetA); |
632 |
*facetlist= facetA; |
633 |
facetA->visitid= ++qh visit_id; |
634 |
FORALLfacet_(*facetlist) { |
635 |
FOREACHneighbor_(facet) { |
636 |
if (neighbor->visitid == qh visit_id) |
637 |
continue; |
638 |
neighbor->visitid= qh visit_id; |
639 |
if (goodseen && !neighbor->good) |
640 |
continue; |
641 |
zinc_(Zcheckpart); |
642 |
qh_distplane (point, neighbor, &dist); |
643 |
if (dist > 0) { |
644 |
qh_removefacet (neighbor); |
645 |
qh_appendfacet (neighbor); |
646 |
if (neighbor->good) { |
647 |
goodseen= True; |
648 |
if (dist > bestdist) { |
649 |
bestdist= dist; |
650 |
bestfacet= neighbor; |
651 |
} |
652 |
} |
653 |
} |
654 |
} |
655 |
} |
656 |
if (bestfacet) { |
657 |
*distp= bestdist; |
658 |
trace2((qh ferr, "qh_findgooddist: p%d is %2.2g above good facet f%d\n", qh_pointid(point), bestdist, bestfacet->id)); |
659 |
return bestfacet; |
660 |
} |
661 |
trace4((qh ferr, "qh_findgooddist: no good facet for p%d above f%d\n", qh_pointid(point), facetA->id)); |
662 |
return NULL; |
663 |
} /* findgooddist */ |
664 |
|
665 |
/*-<a href="qh-geom.htm#TOC" |
666 |
>-------------------------------</a><a name="getarea">-</a> |
667 |
|
668 |
qh_getarea( facetlist ) |
669 |
set area of all facets in facetlist |
670 |
collect statistics |
671 |
|
672 |
returns: |
673 |
sets qh totarea/totvol to total area and volume of convex hull |
674 |
for Delaunay triangulation, computes projected area of the lower or upper hull |
675 |
ignores upper hull if qh ATinfinity |
676 |
|
677 |
notes: |
678 |
could compute outer volume by expanding facet area by rays from interior |
679 |
the following attempt at perpendicular projection underestimated badly: |
680 |
qh.totoutvol += (-dist + facet->maxoutside + qh DISTround) |
681 |
* area/ qh hull_dim; |
682 |
design: |
683 |
for each facet on facetlist |
684 |
compute facet->area |
685 |
update qh.totarea and qh.totvol |
686 |
*/ |
687 |
void qh_getarea (facetT *facetlist) { |
688 |
realT area; |
689 |
realT dist; |
690 |
facetT *facet; |
691 |
|
692 |
if (qh REPORTfreq) |
693 |
fprintf (qh ferr, "computing area of each facet and volume of the convex hull\n"); |
694 |
else |
695 |
trace1((qh ferr, "qh_getarea: computing volume and area for each facet\n")); |
696 |
qh totarea= qh totvol= 0.0; |
697 |
FORALLfacet_(facetlist) { |
698 |
if (!facet->normal) |
699 |
continue; |
700 |
if (facet->upperdelaunay && qh ATinfinity) |
701 |
continue; |
702 |
facet->f.area= area= qh_facetarea (facet); |
703 |
facet->isarea= True; |
704 |
if (qh DELAUNAY) { |
705 |
if (facet->upperdelaunay == qh UPPERdelaunay) |
706 |
qh totarea += area; |
707 |
}else { |
708 |
qh totarea += area; |
709 |
qh_distplane (qh interior_point, facet, &dist); |
710 |
qh totvol += -dist * area/ qh hull_dim; |
711 |
} |
712 |
if (qh PRINTstatistics) { |
713 |
wadd_(Wareatot, area); |
714 |
wmax_(Wareamax, area); |
715 |
wmin_(Wareamin, area); |
716 |
} |
717 |
} |
718 |
} /* getarea */ |
719 |
|
720 |
/*-<a href="qh-geom.htm#TOC" |
721 |
>-------------------------------</a><a name="gram_schmidt">-</a> |
722 |
|
723 |
qh_gram_schmidt( dim, row ) |
724 |
implements Gram-Schmidt orthogonalization by rows |
725 |
|
726 |
returns: |
727 |
false if zero norm |
728 |
overwrites rows[dim][dim] |
729 |
|
730 |
notes: |
731 |
see Golub & van Loan Algorithm 6.2-2 |
732 |
overflow due to small divisors not handled |
733 |
|
734 |
design: |
735 |
for each row |
736 |
compute norm for row |
737 |
if non-zero, normalize row |
738 |
for each remaining rowA |
739 |
compute inner product of row and rowA |
740 |
reduce rowA by row * inner product |
741 |
*/ |
742 |
boolT qh_gram_schmidt(int dim, realT **row) { |
743 |
realT *rowi, *rowj, norm; |
744 |
int i, j, k; |
745 |
|
746 |
for(i=0; i < dim; i++) { |
747 |
rowi= row[i]; |
748 |
for (norm= 0.0, k= dim; k--; rowi++) |
749 |
norm += *rowi * *rowi; |
750 |
norm= sqrt(norm); |
751 |
wmin_(Wmindenom, norm); |
752 |
if (norm == 0.0) /* either 0 or overflow due to sqrt */ |
753 |
return False; |
754 |
for(k= dim; k--; ) |
755 |
*(--rowi) /= norm; |
756 |
for(j= i+1; j < dim; j++) { |
757 |
rowj= row[j]; |
758 |
for(norm= 0.0, k=dim; k--; ) |
759 |
norm += *rowi++ * *rowj++; |
760 |
for(k=dim; k--; ) |
761 |
*(--rowj) -= *(--rowi) * norm; |
762 |
} |
763 |
} |
764 |
return True; |
765 |
} /* gram_schmidt */ |
766 |
|
767 |
|
768 |
/*-<a href="qh-geom.htm#TOC" |
769 |
>-------------------------------</a><a name="inthresholds">-</a> |
770 |
|
771 |
qh_inthresholds( normal, angle ) |
772 |
return True if normal within qh.lower_/upper_threshold |
773 |
|
774 |
returns: |
775 |
estimate of angle by summing of threshold diffs |
776 |
angle may be NULL |
777 |
smaller "angle" is better |
778 |
|
779 |
notes: |
780 |
invalid if qh.SPLITthresholds |
781 |
|
782 |
see: |
783 |
qh.lower_threshold in qh_initbuild() |
784 |
qh_initthresholds() |
785 |
|
786 |
design: |
787 |
for each dimension |
788 |
test threshold |
789 |
*/ |
790 |
boolT qh_inthresholds (coordT *normal, realT *angle) { |
791 |
boolT within= True; |
792 |
int k; |
793 |
realT threshold; |
794 |
|
795 |
if (angle) |
796 |
*angle= 0.0; |
797 |
for(k= 0; k < qh hull_dim; k++) { |
798 |
threshold= qh lower_threshold[k]; |
799 |
if (threshold > -REALmax/2) { |
800 |
if (normal[k] < threshold) |
801 |
within= False; |
802 |
if (angle) { |
803 |
threshold -= normal[k]; |
804 |
*angle += fabs_(threshold); |
805 |
} |
806 |
} |
807 |
if (qh upper_threshold[k] < REALmax/2) { |
808 |
threshold= qh upper_threshold[k]; |
809 |
if (normal[k] > threshold) |
810 |
within= False; |
811 |
if (angle) { |
812 |
threshold -= normal[k]; |
813 |
*angle += fabs_(threshold); |
814 |
} |
815 |
} |
816 |
} |
817 |
return within; |
818 |
} /* inthresholds */ |
819 |
|
820 |
|
821 |
/*-<a href="qh-geom.htm#TOC" |
822 |
>-------------------------------</a><a name="joggleinput">-</a> |
823 |
|
824 |
qh_joggleinput() |
825 |
randomly joggle input to Qhull by qh.JOGGLEmax |
826 |
initial input is qh.first_point/qh.num_points of qh.hull_dim |
827 |
repeated calls use qh.input_points/qh.num_points |
828 |
|
829 |
returns: |
830 |
joggles points at qh.first_point/qh.num_points |
831 |
copies data to qh.input_points/qh.input_malloc if first time |
832 |
determines qh.JOGGLEmax if it was zero |
833 |
if qh.DELAUNAY |
834 |
computes the Delaunay projection of the joggled points |
835 |
|
836 |
notes: |
837 |
if qh.DELAUNAY, unnecessarily joggles the last coordinate |
838 |
the initial 'QJn' may be set larger than qh_JOGGLEmaxincrease |
839 |
|
840 |
design: |
841 |
if qh.DELAUNAY |
842 |
set qh.SCALElast for reduced precision errors |
843 |
if first call |
844 |
initialize qh.input_points to the original input points |
845 |
if qh.JOGGLEmax == 0 |
846 |
determine default qh.JOGGLEmax |
847 |
else |
848 |
increase qh.JOGGLEmax according to qh.build_cnt |
849 |
joggle the input by adding a random number in [-qh.JOGGLEmax,qh.JOGGLEmax] |
850 |
if qh.DELAUNAY |
851 |
sets the Delaunay projection |
852 |
*/ |
853 |
void qh_joggleinput (void) { |
854 |
int size, i, seed; |
855 |
coordT *coordp, *inputp; |
856 |
realT randr, randa, randb; |
857 |
|
858 |
if (!qh input_points) { /* first call */ |
859 |
qh input_points= qh first_point; |
860 |
qh input_malloc= qh POINTSmalloc; |
861 |
size= qh num_points * qh hull_dim * sizeof(coordT); |
862 |
if (!(qh first_point=(coordT*)malloc(size))) { |
863 |
fprintf(qh ferr, "qhull error: insufficient memory to joggle %d points\n", |
864 |
qh num_points); |
865 |
qh_errexit(qh_ERRmem, NULL, NULL); |
866 |
} |
867 |
qh POINTSmalloc= True; |
868 |
if (qh JOGGLEmax == 0.0) { |
869 |
qh JOGGLEmax= qh_detjoggle (qh input_points, qh num_points, qh hull_dim); |
870 |
qh_option ("QJoggle", NULL, &qh JOGGLEmax); |
871 |
} |
872 |
}else { /* repeated call */ |
873 |
if (!qh RERUN && qh build_cnt > qh_JOGGLEretry) { |
874 |
if (((qh build_cnt-qh_JOGGLEretry-1) % qh_JOGGLEagain) == 0) { |
875 |
realT maxjoggle= qh MAXwidth * qh_JOGGLEmaxincrease; |
876 |
if (qh JOGGLEmax < maxjoggle) { |
877 |
qh JOGGLEmax *= qh_JOGGLEincrease; |
878 |
minimize_(qh JOGGLEmax, maxjoggle); |
879 |
} |
880 |
} |
881 |
} |
882 |
qh_option ("QJoggle", NULL, &qh JOGGLEmax); |
883 |
} |
884 |
if (qh build_cnt > 1 && qh JOGGLEmax > fmax_(qh MAXwidth/4, 0.1)) { |
885 |
fprintf (qh ferr, "qhull error: the current joggle for 'QJn', %.2g, is too large for the width\nof the input. If possible, recompile Qhull with higher-precision reals.\n", |
886 |
qh JOGGLEmax); |
887 |
qh_errexit (qh_ERRqhull, NULL, NULL); |
888 |
} |
889 |
/* for some reason, using qh ROTATErandom and qh_RANDOMseed does not repeat the run. Use 'TRn' instead */ |
890 |
seed= qh_RANDOMint; |
891 |
qh_option ("_joggle-seed", &seed, NULL); |
892 |
trace0((qh ferr, "qh_joggleinput: joggle input by %2.2g with seed %d\n", qh JOGGLEmax, seed)); |
893 |
inputp= qh input_points; |
894 |
coordp= qh first_point; |
895 |
randa= 2.0 * qh JOGGLEmax/qh_RANDOMmax; |
896 |
randb= -qh JOGGLEmax; |
897 |
size= qh num_points * qh hull_dim; |
898 |
for (i= size; i--; ) { |
899 |
randr= qh_RANDOMint; |
900 |
*(coordp++)= *(inputp++) + (randr * randa + randb); |
901 |
} |
902 |
if (qh DELAUNAY) { |
903 |
qh last_low= qh last_high= qh last_newhigh= REALmax; |
904 |
qh_setdelaunay (qh hull_dim, qh num_points, qh first_point); |
905 |
} |
906 |
} /* joggleinput */ |
907 |
|
908 |
/*-<a href="qh-geom.htm#TOC" |
909 |
>-------------------------------</a><a name="maxabsval">-</a> |
910 |
|
911 |
qh_maxabsval( normal, dim ) |
912 |
return pointer to maximum absolute value of a dim vector |
913 |
returns NULL if dim=0 |
914 |
*/ |
915 |
realT *qh_maxabsval (realT *normal, int dim) { |
916 |
realT maxval= -REALmax; |
917 |
realT *maxp= NULL, *colp, absval; |
918 |
int k; |
919 |
|
920 |
for (k= dim, colp= normal; k--; colp++) { |
921 |
absval= fabs_(*colp); |
922 |
if (absval > maxval) { |
923 |
maxval= absval; |
924 |
maxp= colp; |
925 |
} |
926 |
} |
927 |
return maxp; |
928 |
} /* maxabsval */ |
929 |
|
930 |
|
931 |
/*-<a href="qh-geom.htm#TOC" |
932 |
>-------------------------------</a><a name="maxmin">-</a> |
933 |
|
934 |
qh_maxmin( points, numpoints, dimension ) |
935 |
return max/min points for each dimension |
936 |
determine max and min coordinates |
937 |
|
938 |
returns: |
939 |
returns a temporary set of max and min points |
940 |
may include duplicate points. Does not include qh.GOODpoint |
941 |
sets qh.NEARzero, qh.MAXabs_coord, qh.MAXsumcoord, qh.MAXwidth |
942 |
qh.MAXlastcoord, qh.MINlastcoord |
943 |
initializes qh.max_outside, qh.min_vertex, qh.WAScoplanar, qh.ZEROall_ok |
944 |
|
945 |
notes: |
946 |
loop duplicated in qh_detjoggle() |
947 |
|
948 |
design: |
949 |
initialize global precision variables |
950 |
checks definition of REAL... |
951 |
for each dimension |
952 |
for each point |
953 |
collect maximum and minimum point |
954 |
collect maximum of maximums and minimum of minimums |
955 |
determine qh.NEARzero for Gaussian Elimination |
956 |
*/ |
957 |
setT *qh_maxmin(pointT *points, int numpoints, int dimension) { |
958 |
int k; |
959 |
realT maxcoord, temp; |
960 |
pointT *minimum, *maximum, *point, *pointtemp; |
961 |
setT *set; |
962 |
|
963 |
qh max_outside= 0.0; |
964 |
qh MAXabs_coord= 0.0; |
965 |
qh MAXwidth= -REALmax; |
966 |
qh MAXsumcoord= 0.0; |
967 |
qh min_vertex= 0.0; |
968 |
qh WAScoplanar= False; |
969 |
if (qh ZEROcentrum) |
970 |
qh ZEROall_ok= True; |
971 |
if (REALmin < REALepsilon && REALmin < REALmax && REALmin > -REALmax |
972 |
&& REALmax > 0.0 && -REALmax < 0.0) |
973 |
; /* all ok */ |
974 |
else { |
975 |
fprintf (qh ferr, "qhull error: floating point constants in user.h are wrong\n\ |
976 |
REALepsilon %g REALmin %g REALmax %g -REALmax %g\n", |
977 |
REALepsilon, REALmin, REALmax, -REALmax); |
978 |
qh_errexit (qh_ERRinput, NULL, NULL); |
979 |
} |
980 |
set= qh_settemp(2*dimension); |
981 |
for(k= 0; k < dimension; k++) { |
982 |
if (points == qh GOODpointp) |
983 |
minimum= maximum= points + dimension; |
984 |
else |
985 |
minimum= maximum= points; |
986 |
FORALLpoint_(points, numpoints) { |
987 |
if (point == qh GOODpointp) |
988 |
continue; |
989 |
if (maximum[k] < point[k]) |
990 |
maximum= point; |
991 |
else if (minimum[k] > point[k]) |
992 |
minimum= point; |
993 |
} |
994 |
if (k == dimension-1) { |
995 |
qh MINlastcoord= minimum[k]; |
996 |
qh MAXlastcoord= maximum[k]; |
997 |
} |
998 |
if (qh SCALElast && k == dimension-1) |
999 |
maxcoord= qh MAXwidth; |
1000 |
else { |
1001 |
maxcoord= fmax_(maximum[k], -minimum[k]); |
1002 |
if (qh GOODpointp) { |
1003 |
temp= fmax_(qh GOODpointp[k], -qh GOODpointp[k]); |
1004 |
maximize_(maxcoord, temp); |
1005 |
} |
1006 |
temp= maximum[k] - minimum[k]; |
1007 |
maximize_(qh MAXwidth, temp); |
1008 |
} |
1009 |
maximize_(qh MAXabs_coord, maxcoord); |
1010 |
qh MAXsumcoord += maxcoord; |
1011 |
qh_setappend (&set, maximum); |
1012 |
qh_setappend (&set, minimum); |
1013 |
/* calculation of qh NEARzero is based on error formula 4.4-13 of |
1014 |
Golub & van Loan, authors say n^3 can be ignored and 10 be used in |
1015 |
place of rho */ |
1016 |
qh NEARzero[k]= 80 * qh MAXsumcoord * REALepsilon; |
1017 |
} |
1018 |
if (qh IStracing >=1) |
1019 |
qh_printpoints (qh ferr, "qh_maxmin: found the max and min points (by dim):", set); |
1020 |
return(set); |
1021 |
} /* maxmin */ |
1022 |
|
1023 |
/*-<a href="qh-geom.htm#TOC" |
1024 |
>-------------------------------</a><a name="maxouter">-</a> |
1025 |
|
1026 |
qh_maxouter() |
1027 |
return maximum distance from facet to outer plane |
1028 |
normally this is qh.max_outside+qh.DISTround |
1029 |
does not include qh.JOGGLEmax |
1030 |
|
1031 |
see: |
1032 |
qh_outerinner() |
1033 |
|
1034 |
notes: |
1035 |
need to add another qh.DISTround if testing actual point with computation |
1036 |
|
1037 |
for joggle: |
1038 |
qh_setfacetplane() updated qh.max_outer for Wnewvertexmax (max distance to vertex) |
1039 |
need to use Wnewvertexmax since could have a coplanar point for a high |
1040 |
facet that is replaced by a low facet |
1041 |
need to add qh.JOGGLEmax if testing input points |
1042 |
*/ |
1043 |
realT qh_maxouter (void) { |
1044 |
realT dist; |
1045 |
|
1046 |
dist= fmax_(qh max_outside, qh DISTround); |
1047 |
dist += qh DISTround; |
1048 |
trace4((qh ferr, "qh_maxouter: max distance from facet to outer plane is %2.2g max_outside is %2.2g\n", dist, qh max_outside)); |
1049 |
return dist; |
1050 |
} /* maxouter */ |
1051 |
|
1052 |
/*-<a href="qh-geom.htm#TOC" |
1053 |
>-------------------------------</a><a name="maxsimplex">-</a> |
1054 |
|
1055 |
qh_maxsimplex( dim, maxpoints, points, numpoints, simplex ) |
1056 |
determines maximum simplex for a set of points |
1057 |
starts from points already in simplex |
1058 |
skips qh.GOODpointp (assumes that it isn't in maxpoints) |
1059 |
|
1060 |
returns: |
1061 |
simplex with dim+1 points |
1062 |
|
1063 |
notes: |
1064 |
assumes at least pointsneeded points in points |
1065 |
maximizes determinate for x,y,z,w, etc. |
1066 |
uses maxpoints as long as determinate is clearly non-zero |
1067 |
|
1068 |
design: |
1069 |
initialize simplex with at least two points |
1070 |
(find points with max or min x coordinate) |
1071 |
for each remaining dimension |
1072 |
add point that maximizes the determinate |
1073 |
(use points from maxpoints first) |
1074 |
*/ |
1075 |
void qh_maxsimplex (int dim, setT *maxpoints, pointT *points, int numpoints, setT **simplex) { |
1076 |
pointT *point, **pointp, *pointtemp, *maxpoint, *minx=NULL, *maxx=NULL; |
1077 |
boolT nearzero, maxnearzero= False; |
1078 |
int k, sizinit; |
1079 |
realT maxdet= -REALmax, det, mincoord= REALmax, maxcoord= -REALmax; |
1080 |
|
1081 |
sizinit= qh_setsize (*simplex); |
1082 |
if (sizinit < 2) { |
1083 |
if (qh_setsize (maxpoints) >= 2) { |
1084 |
FOREACHpoint_(maxpoints) { |
1085 |
if (maxcoord < point[0]) { |
1086 |
maxcoord= point[0]; |
1087 |
maxx= point; |
1088 |
} |
1089 |
if (mincoord > point[0]) { |
1090 |
mincoord= point[0]; |
1091 |
minx= point; |
1092 |
} |
1093 |
} |
1094 |
}else { |
1095 |
FORALLpoint_(points, numpoints) { |
1096 |
if (point == qh GOODpointp) |
1097 |
continue; |
1098 |
if (maxcoord < point[0]) { |
1099 |
maxcoord= point[0]; |
1100 |
maxx= point; |
1101 |
} |
1102 |
if (mincoord > point[0]) { |
1103 |
mincoord= point[0]; |
1104 |
minx= point; |
1105 |
} |
1106 |
} |
1107 |
} |
1108 |
qh_setunique (simplex, minx); |
1109 |
if (qh_setsize (*simplex) < 2) |
1110 |
qh_setunique (simplex, maxx); |
1111 |
sizinit= qh_setsize (*simplex); |
1112 |
if (sizinit < 2) { |
1113 |
qh_precision ("input has same x coordinate"); |
1114 |
if (zzval_(Zsetplane) > qh hull_dim+1) { |
1115 |
fprintf (qh ferr, "qhull precision error (qh_maxsimplex for voronoi_center):\n%d points with the same x coordinate.\n", |
1116 |
qh_setsize(maxpoints)+numpoints); |
1117 |
qh_errexit (qh_ERRprec, NULL, NULL); |
1118 |
}else { |
1119 |
fprintf (qh ferr, "qhull input error: input is less than %d-dimensional since it has the same x coordinate\n", qh hull_dim); |
1120 |
qh_errexit (qh_ERRinput, NULL, NULL); |
1121 |
} |
1122 |
} |
1123 |
} |
1124 |
for(k= sizinit; k < dim+1; k++) { |
1125 |
maxpoint= NULL; |
1126 |
maxdet= -REALmax; |
1127 |
FOREACHpoint_(maxpoints) { |
1128 |
if (!qh_setin (*simplex, point)) { |
1129 |
det= qh_detsimplex(point, *simplex, k, &nearzero); |
1130 |
if ((det= fabs_(det)) > maxdet) { |
1131 |
maxdet= det; |
1132 |
maxpoint= point; |
1133 |
maxnearzero= nearzero; |
1134 |
} |
1135 |
} |
1136 |
} |
1137 |
if (!maxpoint || maxnearzero) { |
1138 |
zinc_(Zsearchpoints); |
1139 |
if (!maxpoint) { |
1140 |
trace0((qh ferr, "qh_maxsimplex: searching all points for %d-th initial vertex.\n", k+1)); |
1141 |
}else { |
1142 |
trace0((qh ferr, "qh_maxsimplex: searching all points for %d-th initial vertex, better than p%d det %2.2g\n", k+1, qh_pointid(maxpoint), maxdet)); |
1143 |
} |
1144 |
FORALLpoint_(points, numpoints) { |
1145 |
if (point == qh GOODpointp) |
1146 |
continue; |
1147 |
if (!qh_setin (*simplex, point)) { |
1148 |
det= qh_detsimplex(point, *simplex, k, &nearzero); |
1149 |
if ((det= fabs_(det)) > maxdet) { |
1150 |
maxdet= det; |
1151 |
maxpoint= point; |
1152 |
maxnearzero= nearzero; |
1153 |
} |
1154 |
} |
1155 |
} |
1156 |
} /* !maxpoint */ |
1157 |
if (!maxpoint) { |
1158 |
fprintf (qh ferr, "qhull internal error (qh_maxsimplex): not enough points available\n"); |
1159 |
qh_errexit (qh_ERRqhull, NULL, NULL); |
1160 |
} |
1161 |
qh_setappend(simplex, maxpoint); |
1162 |
trace1((qh ferr, "qh_maxsimplex: selected point p%d for %d`th initial vertex, det=%2.2g\n", qh_pointid(maxpoint), k+1, maxdet)); |
1163 |
} /* k */ |
1164 |
} /* maxsimplex */ |
1165 |
|
1166 |
/*-<a href="qh-geom.htm#TOC" |
1167 |
>-------------------------------</a><a name="minabsval">-</a> |
1168 |
|
1169 |
qh_minabsval( normal, dim ) |
1170 |
return minimum absolute value of a dim vector |
1171 |
*/ |
1172 |
realT qh_minabsval (realT *normal, int dim) { |
1173 |
realT minval= 0; |
1174 |
realT maxval= 0; |
1175 |
realT *colp; |
1176 |
int k; |
1177 |
|
1178 |
for (k= dim, colp= normal; k--; colp++) { |
1179 |
maximize_(maxval, *colp); |
1180 |
minimize_(minval, *colp); |
1181 |
} |
1182 |
return fmax_(maxval, -minval); |
1183 |
} /* minabsval */ |
1184 |
|
1185 |
|
1186 |
/*-<a href="qh-geom.htm#TOC" |
1187 |
>-------------------------------</a><a name="mindiff">-</a> |
1188 |
|
1189 |
qh_mindif( vecA, vecB, dim ) |
1190 |
return index of min abs. difference of two vectors |
1191 |
*/ |
1192 |
int qh_mindiff (realT *vecA, realT *vecB, int dim) { |
1193 |
realT mindiff= REALmax, diff; |
1194 |
realT *vecAp= vecA, *vecBp= vecB; |
1195 |
int k, mink= 0; |
1196 |
|
1197 |
for (k= 0; k < dim; k++) { |
1198 |
diff= *vecAp++ - *vecBp++; |
1199 |
diff= fabs_(diff); |
1200 |
if (diff < mindiff) { |
1201 |
mindiff= diff; |
1202 |
mink= k; |
1203 |
} |
1204 |
} |
1205 |
return mink; |
1206 |
} /* mindiff */ |
1207 |
|
1208 |
|
1209 |
|
1210 |
/*-<a href="qh-geom.htm#TOC" |
1211 |
>-------------------------------</a><a name="orientoutside">-</a> |
1212 |
|
1213 |
qh_orientoutside( facet ) |
1214 |
make facet outside oriented via qh.interior_point |
1215 |
|
1216 |
returns: |
1217 |
True if facet reversed orientation. |
1218 |
*/ |
1219 |
boolT qh_orientoutside (facetT *facet) { |
1220 |
int k; |
1221 |
realT dist; |
1222 |
|
1223 |
qh_distplane (qh interior_point, facet, &dist); |
1224 |
if (dist > 0) { |
1225 |
for (k= qh hull_dim; k--; ) |
1226 |
facet->normal[k]= -facet->normal[k]; |
1227 |
facet->offset= -facet->offset; |
1228 |
return True; |
1229 |
} |
1230 |
return False; |
1231 |
} /* orientoutside */ |
1232 |
|
1233 |
/*-<a href="qh-geom.htm#TOC" |
1234 |
>-------------------------------</a><a name="outerinner">-</a> |
1235 |
|
1236 |
qh_outerinner( facet, outerplane, innerplane ) |
1237 |
if facet and qh.maxoutdone (i.e., qh_check_maxout) |
1238 |
returns outer and inner plane for facet |
1239 |
else |
1240 |
returns maximum outer and inner plane |
1241 |
accounts for qh.JOGGLEmax |
1242 |
|
1243 |
see: |
1244 |
qh_maxouter(), qh_check_bestdist(), qh_check_points() |
1245 |
|
1246 |
notes: |
1247 |
outerplaner or innerplane may be NULL |
1248 |
|
1249 |
includes qh.DISTround for actual points |
1250 |
adds another qh.DISTround if testing with floating point arithmetic |
1251 |
*/ |
1252 |
void qh_outerinner (facetT *facet, realT *outerplane, realT *innerplane) { |
1253 |
realT dist, mindist; |
1254 |
vertexT *vertex, **vertexp; |
1255 |
|
1256 |
if (outerplane) { |
1257 |
if (!qh_MAXoutside || !facet || !qh maxoutdone) { |
1258 |
*outerplane= qh_maxouter(); /* includes qh.DISTround */ |
1259 |
}else { /* qh_MAXoutside ... */ |
1260 |
#if qh_MAXoutside |
1261 |
*outerplane= facet->maxoutside + qh DISTround; |
1262 |
#endif |
1263 |
|
1264 |
} |
1265 |
if (qh JOGGLEmax < REALmax/2) |
1266 |
*outerplane += qh JOGGLEmax * sqrt (qh hull_dim); |
1267 |
} |
1268 |
if (innerplane) { |
1269 |
if (facet) { |
1270 |
mindist= REALmax; |
1271 |
FOREACHvertex_(facet->vertices) { |
1272 |
zinc_(Zdistio); |
1273 |
qh_distplane (vertex->point, facet, &dist); |
1274 |
minimize_(mindist, dist); |
1275 |
} |
1276 |
*innerplane= mindist - qh DISTround; |
1277 |
}else |
1278 |
*innerplane= qh min_vertex - qh DISTround; |
1279 |
if (qh JOGGLEmax < REALmax/2) |
1280 |
*innerplane -= qh JOGGLEmax * sqrt (qh hull_dim); |
1281 |
} |
1282 |
} /* outerinner */ |
1283 |
|
1284 |
/*-<a href="qh-geom.htm#TOC" |
1285 |
>-------------------------------</a><a name="pointdist">-</a> |
1286 |
|
1287 |
qh_pointdist( point1, point2, dim ) |
1288 |
return distance between two points |
1289 |
|
1290 |
notes: |
1291 |
returns distance squared if 'dim' is negative |
1292 |
*/ |
1293 |
coordT qh_pointdist(pointT *point1, pointT *point2, int dim) { |
1294 |
coordT dist, diff; |
1295 |
int k; |
1296 |
|
1297 |
dist= 0.0; |
1298 |
for (k= (dim > 0 ? dim : -dim); k--; ) { |
1299 |
diff= *point1++ - *point2++; |
1300 |
dist += diff * diff; |
1301 |
} |
1302 |
if (dim > 0) |
1303 |
return(sqrt(dist)); |
1304 |
return dist; |
1305 |
} /* pointdist */ |
1306 |
|
1307 |
|
1308 |
/*-<a href="qh-geom.htm#TOC" |
1309 |
>-------------------------------</a><a name="printmatrix">-</a> |
1310 |
|
1311 |
qh_printmatrix( fp, string, rows, numrow, numcol ) |
1312 |
print matrix to fp given by row vectors |
1313 |
print string as header |
1314 |
|
1315 |
notes: |
1316 |
print a vector by qh_printmatrix(fp, "", &vect, 1, len) |
1317 |
*/ |
1318 |
void qh_printmatrix (FILE *fp, char *string, realT **rows, int numrow, int numcol) { |
1319 |
realT *rowp; |
1320 |
realT r; /*bug fix*/ |
1321 |
int i,k; |
1322 |
|
1323 |
fprintf (fp, "%s\n", string); |
1324 |
for (i= 0; i < numrow; i++) { |
1325 |
rowp= rows[i]; |
1326 |
for (k= 0; k < numcol; k++) { |
1327 |
r= *rowp++; |
1328 |
fprintf (fp, "%6.3g ", r); |
1329 |
} |
1330 |
fprintf (fp, "\n"); |
1331 |
} |
1332 |
} /* printmatrix */ |
1333 |
|
1334 |
|
1335 |
/*-<a href="qh-geom.htm#TOC" |
1336 |
>-------------------------------</a><a name="printpoints">-</a> |
1337 |
|
1338 |
qh_printpoints( fp, string, points ) |
1339 |
print pointids to fp for a set of points |
1340 |
if string, prints string and 'p' point ids |
1341 |
*/ |
1342 |
void qh_printpoints (FILE *fp, char *string, setT *points) { |
1343 |
pointT *point, **pointp; |
1344 |
|
1345 |
if (string) { |
1346 |
fprintf (fp, "%s", string); |
1347 |
FOREACHpoint_(points) |
1348 |
fprintf (fp, " p%d", qh_pointid(point)); |
1349 |
fprintf (fp, "\n"); |
1350 |
}else { |
1351 |
FOREACHpoint_(points) |
1352 |
fprintf (fp, " %d", qh_pointid(point)); |
1353 |
fprintf (fp, "\n"); |
1354 |
} |
1355 |
} /* printpoints */ |
1356 |
|
1357 |
|
1358 |
/*-<a href="qh-geom.htm#TOC" |
1359 |
>-------------------------------</a><a name="projectinput">-</a> |
1360 |
|
1361 |
qh_projectinput() |
1362 |
project input points using qh.lower_bound/upper_bound and qh DELAUNAY |
1363 |
if qh.lower_bound[k]=qh.upper_bound[k]= 0, |
1364 |
removes dimension k |
1365 |
if halfspace intersection |
1366 |
removes dimension k from qh.feasible_point |
1367 |
input points in qh first_point, num_points, input_dim |
1368 |
|
1369 |
returns: |
1370 |
new point array in qh first_point of qh hull_dim coordinates |
1371 |
sets qh POINTSmalloc |
1372 |
if qh DELAUNAY |
1373 |
projects points to paraboloid |
1374 |
lowbound/highbound is also projected |
1375 |
if qh ATinfinity |
1376 |
adds point "at-infinity" |
1377 |
if qh POINTSmalloc |
1378 |
frees old point array |
1379 |
|
1380 |
notes: |
1381 |
checks that qh.hull_dim agrees with qh.input_dim, PROJECTinput, and DELAUNAY |
1382 |
|
1383 |
|
1384 |
design: |
1385 |
sets project[k] to -1 (delete), 0 (keep), 1 (add for Delaunay) |
1386 |
determines newdim and newnum for qh hull_dim and qh num_points |
1387 |
projects points to newpoints |
1388 |
projects qh.lower_bound to itself |
1389 |
projects qh.upper_bound to itself |
1390 |
if qh DELAUNAY |
1391 |
if qh ATINFINITY |
1392 |
projects points to paraboloid |
1393 |
computes "infinity" point as vertex average and 10% above all points |
1394 |
else |
1395 |
uses qh_setdelaunay to project points to paraboloid |
1396 |
*/ |
1397 |
void qh_projectinput (void) { |
1398 |
int k,i; |
1399 |
int newdim= qh input_dim, newnum= qh num_points; |
1400 |
signed char *project; |
1401 |
int size= (qh input_dim+1)*sizeof(*project); |
1402 |
pointT *newpoints, *coord, *infinity; |
1403 |
realT paraboloid, maxboloid= 0; |
1404 |
|
1405 |
project= (signed char*)qh_memalloc (size); |
1406 |
memset ((char*)project, 0, size); |
1407 |
for (k= 0; k < qh input_dim; k++) { /* skip Delaunay bound */ |
1408 |
if (qh lower_bound[k] == 0 && qh upper_bound[k] == 0) { |
1409 |
project[k]= -1; |
1410 |
newdim--; |
1411 |
} |
1412 |
} |
1413 |
if (qh DELAUNAY) { |
1414 |
project[k]= 1; |
1415 |
newdim++; |
1416 |
if (qh ATinfinity) |
1417 |
newnum++; |
1418 |
} |
1419 |
if (newdim != qh hull_dim) { |
1420 |
fprintf(qh ferr, "qhull internal error (qh_projectinput): dimension after projection %d != hull_dim %d\n", newdim, qh hull_dim); |
1421 |
qh_errexit(qh_ERRqhull, NULL, NULL); |
1422 |
} |
1423 |
if (!(newpoints=(coordT*)malloc(newnum*newdim*sizeof(coordT)))){ |
1424 |
fprintf(qh ferr, "qhull error: insufficient memory to project %d points\n", |
1425 |
qh num_points); |
1426 |
qh_errexit(qh_ERRmem, NULL, NULL); |
1427 |
} |
1428 |
qh_projectpoints (project, qh input_dim+1, qh first_point, |
1429 |
qh num_points, qh input_dim, newpoints, newdim); |
1430 |
trace1((qh ferr, "qh_projectinput: updating lower and upper_bound\n")); |
1431 |
qh_projectpoints (project, qh input_dim+1, qh lower_bound, |
1432 |
1, qh input_dim+1, qh lower_bound, newdim+1); |
1433 |
qh_projectpoints (project, qh input_dim+1, qh upper_bound, |
1434 |
1, qh input_dim+1, qh upper_bound, newdim+1); |
1435 |
if (qh HALFspace) { |
1436 |
if (!qh feasible_point) { |
1437 |
fprintf(qh ferr, "qhull internal error (qh_projectinput): HALFspace defined without qh.feasible_point\n"); |
1438 |
qh_errexit(qh_ERRqhull, NULL, NULL); |
1439 |
} |
1440 |
qh_projectpoints (project, qh input_dim, qh feasible_point, |
1441 |
1, qh input_dim, qh feasible_point, newdim); |
1442 |
} |
1443 |
qh_memfree(project, ((qh input_dim+1)*sizeof(*project))); |
1444 |
if (qh POINTSmalloc) |
1445 |
free (qh first_point); |
1446 |
qh first_point= newpoints; |
1447 |
qh POINTSmalloc= True; |
1448 |
if (qh DELAUNAY && qh ATinfinity) { |
1449 |
coord= qh first_point; |
1450 |
infinity= qh first_point + qh hull_dim * qh num_points; |
1451 |
for (k=qh hull_dim-1; k--; ) |
1452 |
infinity[k]= 0.0; |
1453 |
for (i=qh num_points; i--; ) { |
1454 |
paraboloid= 0.0; |
1455 |
for (k=0; k < qh hull_dim-1; k++) { |
1456 |
paraboloid += *coord * *coord; |
1457 |
infinity[k] += *coord; |
1458 |
coord++; |
1459 |
} |
1460 |
*(coord++)= paraboloid; |
1461 |
maximize_(maxboloid, paraboloid); |
1462 |
} |
1463 |
/* coord == infinity */ |
1464 |
for (k=qh hull_dim-1; k--; ) |
1465 |
*(coord++) /= qh num_points; |
1466 |
*(coord++)= maxboloid * 1.1; |
1467 |
qh num_points++; |
1468 |
trace0((qh ferr, "qh_projectinput: projected points to paraboloid for Delaunay\n")); |
1469 |
}else if (qh DELAUNAY) /* !qh ATinfinity */ |
1470 |
qh_setdelaunay( qh hull_dim, qh num_points, qh first_point); |
1471 |
} /* projectinput */ |
1472 |
|
1473 |
|
1474 |
/*-<a href="qh-geom.htm#TOC" |
1475 |
>-------------------------------</a><a name="projectpoints">-</a> |
1476 |
|
1477 |
qh_projectpoints( project, n, points, numpoints, dim, newpoints, newdim ) |
1478 |
project points/numpoints/dim to newpoints/newdim |
1479 |
if project[k] == -1 |
1480 |
delete dimension k |
1481 |
if project[k] == 1 |
1482 |
add dimension k by duplicating previous column |
1483 |
n is size of project |
1484 |
|
1485 |
notes: |
1486 |
newpoints may be points if only adding dimension at end |
1487 |
|
1488 |
design: |
1489 |
check that 'project' and 'newdim' agree |
1490 |
for each dimension |
1491 |
if project == -1 |
1492 |
skip dimension |
1493 |
else |
1494 |
determine start of column in newpoints |
1495 |
determine start of column in points |
1496 |
if project == +1, duplicate previous column |
1497 |
copy dimension (column) from points to newpoints |
1498 |
*/ |
1499 |
void qh_projectpoints (signed char *project, int n, realT *points, |
1500 |
int numpoints, int dim, realT *newpoints, int newdim) { |
1501 |
int testdim= dim, oldk=0, newk=0, i,j=0,k; |
1502 |
realT *newp, *oldp; |
1503 |
|
1504 |
for (k= 0; k < n; k++) |
1505 |
testdim += project[k]; |
1506 |
if (testdim != newdim) { |
1507 |
fprintf (qh ferr, "qhull internal error (qh_projectpoints): newdim %d should be %d after projection\n", |
1508 |
newdim, testdim); |
1509 |
qh_errexit (qh_ERRqhull, NULL, NULL); |
1510 |
} |
1511 |
for (j= 0; j<n; j++) { |
1512 |
if (project[j] == -1) |
1513 |
oldk++; |
1514 |
else { |
1515 |
newp= newpoints+newk++; |
1516 |
if (project[j] == +1) { |
1517 |
if (oldk >= dim) |
1518 |
continue; |
1519 |
oldp= points+oldk; |
1520 |
}else |
1521 |
oldp= points+oldk++; |
1522 |
for (i=numpoints; i--; ) { |
1523 |
*newp= *oldp; |
1524 |
newp += newdim; |
1525 |
oldp += dim; |
1526 |
} |
1527 |
} |
1528 |
if (oldk >= dim) |
1529 |
break; |
1530 |
} |
1531 |
trace1((qh ferr, "qh_projectpoints: projected %d points from dim %d to dim %d\n", numpoints, dim, newdim)); |
1532 |
} /* projectpoints */ |
1533 |
|
1534 |
|
1535 |
/*-<a href="qh-geom.htm#TOC" |
1536 |
>-------------------------------</a><a name="rand">-</a> |
1537 |
|
1538 |
qh_rand() |
1539 |
qh_srand( seed ) |
1540 |
generate pseudo-random number between 1 and 2^31 -2 |
1541 |
|
1542 |
notes: |
1543 |
from Park & Miller's minimimal standard random number generator |
1544 |
Communications of the ACM, 31:1192-1201, 1988. |
1545 |
does not use 0 or 2^31 -1 |
1546 |
this is silently enforced by qh_srand() |
1547 |
can make 'Rn' much faster by moving qh_rand to qh_distplane |
1548 |
*/ |
1549 |
int qh_rand_seed= 1; /* define as global variable instead of using qh */ |
1550 |
|
1551 |
int qh_rand( void) { |
1552 |
#define qh_rand_a 16807 |
1553 |
#define qh_rand_m 2147483647 |
1554 |
/* m div a */ |
1555 |
#define qh_rand_q 127773 |
1556 |
/* m mod a */ |
1557 |
#define qh_rand_r 2836 |
1558 |
int lo, hi, test; |
1559 |
int seed = qh_rand_seed; |
1560 |
|
1561 |
hi = seed / qh_rand_q; /* seed div q */ |
1562 |
lo = seed % qh_rand_q; /* seed mod q */ |
1563 |
test = qh_rand_a * lo - qh_rand_r * hi; |
1564 |
if (test > 0) |
1565 |
seed= test; |
1566 |
else |
1567 |
seed= test + qh_rand_m; |
1568 |
qh_rand_seed= seed; |
1569 |
/* seed = seed < qh_RANDOMmax/2 ? 0 : qh_RANDOMmax; for testing */ |
1570 |
/* seed = qh_RANDOMmax; for testing */ |
1571 |
return seed; |
1572 |
} /* rand */ |
1573 |
|
1574 |
void qh_srand( int seed) { |
1575 |
if (seed < 1) |
1576 |
qh_rand_seed= 1; |
1577 |
else if (seed >= qh_rand_m) |
1578 |
qh_rand_seed= qh_rand_m - 1; |
1579 |
else |
1580 |
qh_rand_seed= seed; |
1581 |
} /* qh_srand */ |
1582 |
|
1583 |
/*-<a href="qh-geom.htm#TOC" |
1584 |
>-------------------------------</a><a name="randomfactor">-</a> |
1585 |
|
1586 |
qh_randomfactor() |
1587 |
return a random factor within qh.RANDOMmax of 1.0 |
1588 |
|
1589 |
notes: |
1590 |
qh.RANDOMa/b are defined in global.c |
1591 |
*/ |
1592 |
realT qh_randomfactor (void) { |
1593 |
realT randr; |
1594 |
|
1595 |
randr= qh_RANDOMint; |
1596 |
return randr * qh RANDOMa + qh RANDOMb; |
1597 |
} /* randomfactor */ |
1598 |
|
1599 |
/*-<a href="qh-geom.htm#TOC" |
1600 |
>-------------------------------</a><a name="randommatrix">-</a> |
1601 |
|
1602 |
qh_randommatrix( buffer, dim, rows ) |
1603 |
generate a random dim X dim matrix in range [-1,1] |
1604 |
assumes buffer is [dim+1, dim] |
1605 |
|
1606 |
returns: |
1607 |
sets buffer to random numbers |
1608 |
sets rows to rows of buffer |
1609 |
sets row[dim] as scratch row |
1610 |
*/ |
1611 |
void qh_randommatrix (realT *buffer, int dim, realT **rows) { |
1612 |
int i, k; |
1613 |
realT **rowi, *coord, realr; |
1614 |
|
1615 |
coord= buffer; |
1616 |
rowi= rows; |
1617 |
for (i=0; i < dim; i++) { |
1618 |
*(rowi++)= coord; |
1619 |
for (k=0; k < dim; k++) { |
1620 |
realr= qh_RANDOMint; |
1621 |
*(coord++)= 2.0 * realr/(qh_RANDOMmax+1) - 1.0; |
1622 |
} |
1623 |
} |
1624 |
*rowi= coord; |
1625 |
} /* randommatrix */ |
1626 |
|
1627 |
|
1628 |
/*-<a href="qh-geom.htm#TOC" |
1629 |
>-------------------------------</a><a name="rotateinput">-</a> |
1630 |
|
1631 |
qh_rotateinput( rows ) |
1632 |
rotate input using row matrix |
1633 |
input points given by qh first_point, num_points, hull_dim |
1634 |
assumes rows[dim] is a scratch buffer |
1635 |
if qh POINTSmalloc, overwrites input points, else mallocs a new array |
1636 |
|
1637 |
returns: |
1638 |
rotated input |
1639 |
sets qh POINTSmalloc |
1640 |
|
1641 |
design: |
1642 |
see qh_rotatepoints |
1643 |
*/ |
1644 |
void qh_rotateinput (realT **rows) { |
1645 |
|
1646 |
if (!qh POINTSmalloc) { |
1647 |
qh first_point= qh_copypoints (qh first_point, qh num_points, qh hull_dim); |
1648 |
qh POINTSmalloc= True; |
1649 |
} |
1650 |
qh_rotatepoints (qh first_point, qh num_points, qh hull_dim, rows); |
1651 |
} /* rotateinput */ |
1652 |
|
1653 |
/*-<a href="qh-geom.htm#TOC" |
1654 |
>-------------------------------</a><a name="rotatepoints">-</a> |
1655 |
|
1656 |
qh_rotatepoints( points, numpoints, dim, row ) |
1657 |
rotate numpoints points by a d-dim row matrix |
1658 |
assumes rows[dim] is a scratch buffer |
1659 |
|
1660 |
returns: |
1661 |
rotated points in place |
1662 |
|
1663 |
design: |
1664 |
for each point |
1665 |
for each coordinate |
1666 |
please use row[dim] to compute partial inner product |
1667 |
for each coordinate |
1668 |
rotate by partial inner product |
1669 |
*/ |
1670 |
void qh_rotatepoints (realT *points, int numpoints, int dim, realT **row) { |
1671 |
realT *point, *rowi, *coord= NULL, sum, *newval; |
1672 |
int i,j,k; |
1673 |
|
1674 |
if (qh IStracing >= 1) |
1675 |
qh_printmatrix (qh ferr, "qh_rotatepoints: rotate points by", row, dim, dim); |
1676 |
for (point= points, j= numpoints; j--; point += dim) { |
1677 |
newval= row[dim]; |
1678 |
for (i= 0; i < dim; i++) { |
1679 |
rowi= row[i]; |
1680 |
coord= point; |
1681 |
for (sum= 0.0, k= dim; k--; ) |
1682 |
sum += *rowi++ * *coord++; |
1683 |
*(newval++)= sum; |
1684 |
} |
1685 |
for (k= dim; k--; ) |
1686 |
*(--coord)= *(--newval); |
1687 |
} |
1688 |
} /* rotatepoints */ |
1689 |
|
1690 |
|
1691 |
/*-<a href="qh-geom.htm#TOC" |
1692 |
>-------------------------------</a><a name="scaleinput">-</a> |
1693 |
|
1694 |
qh_scaleinput() |
1695 |
scale input points using qh low_bound/high_bound |
1696 |
input points given by qh first_point, num_points, hull_dim |
1697 |
if qh POINTSmalloc, overwrites input points, else mallocs a new array |
1698 |
|
1699 |
returns: |
1700 |
scales coordinates of points to low_bound[k], high_bound[k] |
1701 |
sets qh POINTSmalloc |
1702 |
|
1703 |
design: |
1704 |
see qh_scalepoints |
1705 |
*/ |
1706 |
void qh_scaleinput (void) { |
1707 |
|
1708 |
if (!qh POINTSmalloc) { |
1709 |
qh first_point= qh_copypoints (qh first_point, qh num_points, qh hull_dim); |
1710 |
qh POINTSmalloc= True; |
1711 |
} |
1712 |
qh_scalepoints (qh first_point, qh num_points, qh hull_dim, |
1713 |
qh lower_bound, qh upper_bound); |
1714 |
} /* scaleinput */ |
1715 |
|
1716 |
/*-<a href="qh-geom.htm#TOC" |
1717 |
>-------------------------------</a><a name="scalelast">-</a> |
1718 |
|
1719 |
qh_scalelast( points, numpoints, dim, low, high, newhigh ) |
1720 |
scale last coordinate to [0,m] for Delaunay triangulations |
1721 |
input points given by points, numpoints, dim |
1722 |
|
1723 |
returns: |
1724 |
changes scale of last coordinate from [low, high] to [0, newhigh] |
1725 |
overwrites last coordinate of each point |
1726 |
saves low/high/newhigh in qh.last_low, etc. for qh_setdelaunay() |
1727 |
|
1728 |
notes: |
1729 |
when called by qh_setdelaunay, low/high may not match actual data |
1730 |
|
1731 |
design: |
1732 |
compute scale and shift factors |
1733 |
apply to last coordinate of each point |
1734 |
*/ |
1735 |
void qh_scalelast (coordT *points, int numpoints, int dim, coordT low, |
1736 |
coordT high, coordT newhigh) { |
1737 |
realT scale, shift; |
1738 |
coordT *coord; |
1739 |
int i; |
1740 |
boolT nearzero= False; |
1741 |
|
1742 |
trace4((qh ferr, "qh_scalelast: scale last coordinate from [%2.2g, %2.2g] to [0,%2.2g]\n", low, high, newhigh)); |
1743 |
qh last_low= low; |
1744 |
qh last_high= high; |
1745 |
qh last_newhigh= newhigh; |
1746 |
scale= qh_divzero (newhigh, high - low, |
1747 |
qh MINdenom_1, &nearzero); |
1748 |
if (nearzero) { |
1749 |
if (qh DELAUNAY) |
1750 |
fprintf (qh ferr, "qhull input error: can not scale last coordinate. Input is cocircular\n or cospherical. Use option 'Qz' to add a point at infinity.\n"); |
1751 |
else |
1752 |
fprintf (qh ferr, "qhull input error: can not scale last coordinate. New bounds [0, %2.2g] are too wide for\nexisting bounds [%2.2g, %2.2g] (width %2.2g)\n", |
1753 |
newhigh, low, high, high-low); |
1754 |
qh_errexit (qh_ERRinput, NULL, NULL); |
1755 |
} |
1756 |
shift= - low * newhigh / (high-low); |
1757 |
coord= points + dim - 1; |
1758 |
for (i= numpoints; i--; coord += dim) |
1759 |
*coord= *coord * scale + shift; |
1760 |
} /* scalelast */ |
1761 |
|
1762 |
/*-<a href="qh-geom.htm#TOC" |
1763 |
>-------------------------------</a><a name="scalepoints">-</a> |
1764 |
|
1765 |
qh_scalepoints( points, numpoints, dim, newlows, newhighs ) |
1766 |
scale points to new lowbound and highbound |
1767 |
retains old bound when newlow= -REALmax or newhigh= +REALmax |
1768 |
|
1769 |
returns: |
1770 |
scaled points |
1771 |
overwrites old points |
1772 |
|
1773 |
design: |
1774 |
for each coordinate |
1775 |
compute current low and high bound |
1776 |
compute scale and shift factors |
1777 |
scale all points |
1778 |
enforce new low and high bound for all points |
1779 |
*/ |
1780 |
void qh_scalepoints (pointT *points, int numpoints, int dim, |
1781 |
realT *newlows, realT *newhighs) { |
1782 |
int i,k; |
1783 |
realT shift, scale, *coord, low, high, newlow, newhigh, mincoord, maxcoord; |
1784 |
boolT nearzero= False; |
1785 |
|
1786 |
for (k= 0; k < dim; k++) { |
1787 |
newhigh= newhighs[k]; |
1788 |
newlow= newlows[k]; |
1789 |
if (newhigh > REALmax/2 && newlow < -REALmax/2) |
1790 |
continue; |
1791 |
low= REALmax; |
1792 |
high= -REALmax; |
1793 |
for (i= numpoints, coord= points+k; i--; coord += dim) { |
1794 |
minimize_(low, *coord); |
1795 |
maximize_(high, *coord); |
1796 |
} |
1797 |
if (newhigh > REALmax/2) |
1798 |
newhigh= high; |
1799 |
if (newlow < -REALmax/2) |
1800 |
newlow= low; |
1801 |
if (qh DELAUNAY && k == dim-1 && newhigh < newlow) { |
1802 |
fprintf (qh ferr, "qhull input error: 'Qb%d' or 'QB%d' inverts paraboloid since high bound %.2g < low bound %.2g\n", |
1803 |
k, k, newhigh, newlow); |
1804 |
qh_errexit (qh_ERRinput, NULL, NULL); |
1805 |
} |
1806 |
scale= qh_divzero (newhigh - newlow, high - low, |
1807 |
qh MINdenom_1, &nearzero); |
1808 |
if (nearzero) { |
1809 |
fprintf (qh ferr, "qhull input error: %d'th dimension's new bounds [%2.2g, %2.2g] too wide for\nexisting bounds [%2.2g, %2.2g]\n", |
1810 |
k, newlow, newhigh, low, high); |
1811 |
qh_errexit (qh_ERRinput, NULL, NULL); |
1812 |
} |
1813 |
shift= (newlow * high - low * newhigh)/(high-low); |
1814 |
coord= points+k; |
1815 |
for (i= numpoints; i--; coord += dim) |
1816 |
*coord= *coord * scale + shift; |
1817 |
coord= points+k; |
1818 |
if (newlow < newhigh) { |
1819 |
mincoord= newlow; |
1820 |
maxcoord= newhigh; |
1821 |
}else { |
1822 |
mincoord= newhigh; |
1823 |
maxcoord= newlow; |
1824 |
} |
1825 |
for (i= numpoints; i--; coord += dim) { |
1826 |
minimize_(*coord, maxcoord); /* because of roundoff error */ |
1827 |
maximize_(*coord, mincoord); |
1828 |
} |
1829 |
trace0((qh ferr, "qh_scalepoints: scaled %d'th coordinate [%2.2g, %2.2g] to [%.2g, %.2g] for %d points by %2.2g and shifted %2.2g\n", k, low, high, newlow, newhigh, numpoints, scale, shift)); |
1830 |
} |
1831 |
} /* scalepoints */ |
1832 |
|
1833 |
|
1834 |
/*-<a href="qh-geom.htm#TOC" |
1835 |
>-------------------------------</a><a name="setdelaunay">-</a> |
1836 |
|
1837 |
qh_setdelaunay( dim, count, points ) |
1838 |
project count points to dim-d paraboloid for Delaunay triangulation |
1839 |
|
1840 |
dim is one more than the dimension of the input set |
1841 |
assumes dim is at least 3 (i.e., at least a 2-d Delaunay triangulation) |
1842 |
|
1843 |
points is a dim*count realT array. The first dim-1 coordinates |
1844 |
are the coordinates of the first input point. array[dim] is |
1845 |
the first coordinate of the second input point. array[2*dim] is |
1846 |
the first coordinate of the third input point. |
1847 |
|
1848 |
if qh.last_low defined (i.e., 'Qbb' called qh_scalelast) |
1849 |
calls qh_scalelast to scale the last coordinate the same as the other points |
1850 |
|
1851 |
returns: |
1852 |
for each point |
1853 |
sets point[dim-1] to sum of squares of coordinates |
1854 |
scale points to 'Qbb' if needed |
1855 |
|
1856 |
notes: |
1857 |
to project one point, use |
1858 |
qh_setdelaunay (qh hull_dim, 1, point) |
1859 |
|
1860 |
Do not use options 'Qbk', 'QBk', or 'QbB' since they scale |
1861 |
the coordinates after the original projection. |
1862 |
|
1863 |
*/ |
1864 |
void qh_setdelaunay (int dim, int count, pointT *points) { |
1865 |
int i, k; |
1866 |
coordT *coordp, coord; |
1867 |
realT paraboloid; |
1868 |
|
1869 |
trace0((qh ferr, "qh_setdelaunay: project %d points to paraboloid for Delaunay triangulation\n", count)); |
1870 |
coordp= points; |
1871 |
for (i= 0; i < count; i++) { |
1872 |
coord= *coordp++; |
1873 |
paraboloid= coord*coord; |
1874 |
for (k= dim-2; k--; ) { |
1875 |
coord= *coordp++; |
1876 |
paraboloid += coord*coord; |
1877 |
} |
1878 |
*coordp++ = paraboloid; |
1879 |
} |
1880 |
if (qh last_low < REALmax/2) |
1881 |
qh_scalelast (points, count, dim, qh last_low, qh last_high, qh last_newhigh); |
1882 |
} /* setdelaunay */ |
1883 |
|
1884 |
|
1885 |
/*-<a href="qh-geom.htm#TOC" |
1886 |
>-------------------------------</a><a name="sethalfspace">-</a> |
1887 |
|
1888 |
qh_sethalfspace( dim, coords, nextp, normal, offset, feasible ) |
1889 |
set point to dual of halfspace relative to feasible point |
1890 |
halfspace is normal coefficients and offset. |
1891 |
|
1892 |
returns: |
1893 |
false if feasible point is outside of hull (error message already reported) |
1894 |
overwrites coordinates for point at dim coords |
1895 |
nextp= next point (coords) |
1896 |
|
1897 |
design: |
1898 |
compute distance from feasible point to halfspace |
1899 |
divide each normal coefficient by -dist |
1900 |
*/ |
1901 |
boolT qh_sethalfspace (int dim, coordT *coords, coordT **nextp, |
1902 |
coordT *normal, coordT *offset, coordT *feasible) { |
1903 |
coordT *normp= normal, *feasiblep= feasible, *coordp= coords; |
1904 |
realT dist; |
1905 |
realT r; /*bug fix*/ |
1906 |
int k; |
1907 |
boolT zerodiv; |
1908 |
|
1909 |
dist= *offset; |
1910 |
for (k= dim; k--; ) |
1911 |
dist += *(normp++) * *(feasiblep++); |
1912 |
if (dist > 0) |
1913 |
goto LABELerroroutside; |
1914 |
normp= normal; |
1915 |
if (dist < -qh MINdenom) { |
1916 |
for (k= dim; k--; ) |
1917 |
*(coordp++)= *(normp++) / -dist; |
1918 |
}else { |
1919 |
for (k= dim; k--; ) { |
1920 |
*(coordp++)= qh_divzero (*(normp++), -dist, qh MINdenom_1, &zerodiv); |
1921 |
if (zerodiv) |
1922 |
goto LABELerroroutside; |
1923 |
} |
1924 |
} |
1925 |
*nextp= coordp; |
1926 |
if (qh IStracing >= 4) { |
1927 |
fprintf (qh ferr, "qh_sethalfspace: halfspace at offset %6.2g to point: ", *offset); |
1928 |
for (k= dim, coordp= coords; k--; ) { |
1929 |
r= *coordp++; |
1930 |
fprintf (qh ferr, " %6.2g", r); |
1931 |
} |
1932 |
fprintf (qh ferr, "\n"); |
1933 |
} |
1934 |
return True; |
1935 |
LABELerroroutside: |
1936 |
feasiblep= feasible; |
1937 |
normp= normal; |
1938 |
fprintf(qh ferr, "qhull input error: feasible point is not clearly inside halfspace\nfeasible point: "); |
1939 |
for (k= dim; k--; ) |
1940 |
fprintf (qh ferr, qh_REAL_1, r=*(feasiblep++)); |
1941 |
fprintf (qh ferr, "\n halfspace: "); |
1942 |
for (k= dim; k--; ) |
1943 |
fprintf (qh ferr, qh_REAL_1, r=*(normp++)); |
1944 |
fprintf (qh ferr, "\n at offset: "); |
1945 |
fprintf (qh ferr, qh_REAL_1, *offset); |
1946 |
fprintf (qh ferr, " and distance: "); |
1947 |
fprintf (qh ferr, qh_REAL_1, dist); |
1948 |
fprintf (qh ferr, "\n"); |
1949 |
return False; |
1950 |
} /* sethalfspace */ |
1951 |
|
1952 |
/*-<a href="qh-geom.htm#TOC" |
1953 |
>-------------------------------</a><a name="sethalfspace_all">-</a> |
1954 |
|
1955 |
qh_sethalfspace_all( dim, count, halfspaces, feasible ) |
1956 |
generate dual for halfspace intersection with feasible point |
1957 |
array of count halfspaces |
1958 |
each halfspace is normal coefficients followed by offset |
1959 |
the origin is inside the halfspace if the offset is negative |
1960 |
|
1961 |
returns: |
1962 |
malloc'd array of count X dim-1 points |
1963 |
|
1964 |
notes: |
1965 |
call before qh_init_B or qh_initqhull_globals |
1966 |
unused/untested code: please email bradb@shore.net if this works ok for you |
1967 |
If using option 'Fp', also set qh feasible_point. It is a malloc'd array |
1968 |
that is freed by qh_freebuffers. |
1969 |
|
1970 |
design: |
1971 |
see qh_sethalfspace |
1972 |
*/ |
1973 |
coordT *qh_sethalfspace_all (int dim, int count, coordT *halfspaces, pointT *feasible) { |
1974 |
int i, newdim; |
1975 |
pointT *newpoints; |
1976 |
coordT *coordp, *normalp, *offsetp; |
1977 |
|
1978 |
trace0((qh ferr, "qh_sethalfspace_all: compute dual for halfspace intersection\n")); |
1979 |
newdim= dim - 1; |
1980 |
if (!(newpoints=(coordT*)malloc(count*newdim*sizeof(coordT)))){ |
1981 |
fprintf(qh ferr, "qhull error: insufficient memory to compute dual of %d halfspaces\n", |
1982 |
count); |
1983 |
qh_errexit(qh_ERRmem, NULL, NULL); |
1984 |
} |
1985 |
coordp= newpoints; |
1986 |
normalp= halfspaces; |
1987 |
for (i= 0; i < count; i++) { |
1988 |
offsetp= normalp + newdim; |
1989 |
if (!qh_sethalfspace (newdim, coordp, &coordp, normalp, offsetp, feasible)) { |
1990 |
fprintf (qh ferr, "The halfspace was at index %d\n", i); |
1991 |
qh_errexit (qh_ERRinput, NULL, NULL); |
1992 |
} |
1993 |
normalp= offsetp + 1; |
1994 |
} |
1995 |
return newpoints; |
1996 |
} /* sethalfspace_all */ |
1997 |
|
1998 |
|
1999 |
/*-<a href="qh-geom.htm#TOC" |
2000 |
>-------------------------------</a><a name="sharpnewfacets">-</a> |
2001 |
|
2002 |
qh_sharpnewfacets() |
2003 |
|
2004 |
returns: |
2005 |
true if could be an acute angle (facets in different quadrants) |
2006 |
|
2007 |
notes: |
2008 |
for qh_findbest |
2009 |
|
2010 |
design: |
2011 |
for all facets on qh.newfacet_list |
2012 |
if two facets are in different quadrants |
2013 |
set issharp |
2014 |
*/ |
2015 |
boolT qh_sharpnewfacets () { |
2016 |
facetT *facet; |
2017 |
boolT issharp = False; |
2018 |
int *quadrant, k; |
2019 |
|
2020 |
quadrant= (int*)qh_memalloc (qh hull_dim * sizeof(int)); |
2021 |
FORALLfacet_(qh newfacet_list) { |
2022 |
if (facet == qh newfacet_list) { |
2023 |
for (k= qh hull_dim; k--; ) |
2024 |
quadrant[ k]= (facet->normal[ k] > 0); |
2025 |
}else { |
2026 |
for (k= qh hull_dim; k--; ) { |
2027 |
if (quadrant[ k] != (facet->normal[ k] > 0)) { |
2028 |
issharp= True; |
2029 |
break; |
2030 |
} |
2031 |
} |
2032 |
} |
2033 |
if (issharp) |
2034 |
break; |
2035 |
} |
2036 |
qh_memfree( quadrant, qh hull_dim * sizeof(int)); |
2037 |
trace3((qh ferr, "qh_sharpnewfacets: %d\n", issharp)); |
2038 |
return issharp; |
2039 |
} /* sharpnewfacets */ |
2040 |
|
2041 |
/*-<a href="qh-geom.htm#TOC" |
2042 |
>-------------------------------</a><a name="voronoi_center">-</a> |
2043 |
|
2044 |
qh_voronoi_center( dim, points ) |
2045 |
return Voronoi center for a set of points |
2046 |
dim is the orginal dimension of the points |
2047 |
gh.gm_matrix/qh.gm_row are scratch buffers |
2048 |
|
2049 |
returns: |
2050 |
center as a temporary point |
2051 |
if non-simplicial, |
2052 |
returns center for max simplex of points |
2053 |
|
2054 |
notes: |
2055 |
from Bowyer & Woodwark, A Programmer's Geometry, 1983, p. 65 |
2056 |
|
2057 |
design: |
2058 |
if non-simplicial |
2059 |
determine max simplex for points |
2060 |
translate point0 of simplex to origin |
2061 |
compute sum of squares of diagonal |
2062 |
compute determinate |
2063 |
compute Voronoi center (see Bowyer & Woodwark) |
2064 |
*/ |
2065 |
pointT *qh_voronoi_center (int dim, setT *points) { |
2066 |
pointT *point, **pointp, *point0; |
2067 |
pointT *center= (pointT*)qh_memalloc (qh center_size); |
2068 |
setT *simplex; |
2069 |
int i, j, k, size= qh_setsize(points); |
2070 |
coordT *gmcoord; |
2071 |
realT *diffp, sum2, *sum2row, *sum2p, det, factor; |
2072 |
boolT nearzero, infinite; |
2073 |
|
2074 |
if (size == dim+1) |
2075 |
simplex= points; |
2076 |
else if (size < dim+1) { |
2077 |
fprintf (qh ferr, "qhull internal error (qh_voronoi_center):\n need at least %d points to construct a Voronoi center\n", |
2078 |
dim+1); |
2079 |
qh_errexit (qh_ERRqhull, NULL, NULL); |
2080 |
}else { |
2081 |
simplex= qh_settemp (dim+1); |
2082 |
qh_maxsimplex (dim, points, NULL, 0, &simplex); |
2083 |
} |
2084 |
point0= SETfirstt_(simplex, pointT); |
2085 |
gmcoord= qh gm_matrix; |
2086 |
for (k=0; k < dim; k++) { |
2087 |
qh gm_row[k]= gmcoord; |
2088 |
FOREACHpoint_(simplex) { |
2089 |
if (point != point0) |
2090 |
*(gmcoord++)= point[k] - point0[k]; |
2091 |
} |
2092 |
} |
2093 |
sum2row= gmcoord; |
2094 |
for (i=0; i < dim; i++) { |
2095 |
sum2= 0.0; |
2096 |
for (k= 0; k < dim; k++) { |
2097 |
diffp= qh gm_row[k] + i; |
2098 |
sum2 += *diffp * *diffp; |
2099 |
} |
2100 |
*(gmcoord++)= sum2; |
2101 |
} |
2102 |
det= qh_determinant (qh gm_row, dim, &nearzero); |
2103 |
factor= qh_divzero (0.5, det, qh MINdenom, &infinite); |
2104 |
if (infinite) { |
2105 |
for (k=dim; k--; ) |
2106 |
center[k]= qh_INFINITE; |
2107 |
if (qh IStracing) |
2108 |
qh_printpoints (qh ferr, "qh_voronoi_center: at infinity for ", simplex); |
2109 |
}else { |
2110 |
for (i=0; i < dim; i++) { |
2111 |
gmcoord= qh gm_matrix; |
2112 |
sum2p= sum2row; |
2113 |
for (k=0; k < dim; k++) { |
2114 |
qh gm_row[k]= gmcoord; |
2115 |
if (k == i) { |
2116 |
for (j= dim; j--; ) |
2117 |
*(gmcoord++)= *sum2p++; |
2118 |
}else { |
2119 |
FOREACHpoint_(simplex) { |
2120 |
if (point != point0) |
2121 |
*(gmcoord++)= point[k] - point0[k]; |
2122 |
} |
2123 |
} |
2124 |
} |
2125 |
center[i]= qh_determinant (qh gm_row, dim, &nearzero)*factor + point0[i]; |
2126 |
} |
2127 |
#ifndef qh_NOtrace |
2128 |
if (qh IStracing >= 3) { |
2129 |
fprintf (qh ferr, "qh_voronoi_center: det %2.2g factor %2.2g ", det, factor); |
2130 |
qh_printmatrix (qh ferr, "center:", ¢er, 1, dim); |
2131 |
if (qh IStracing >= 5) { |
2132 |
qh_printpoints (qh ferr, "points", simplex); |
2133 |
FOREACHpoint_(simplex) |
2134 |
fprintf (qh ferr, "p%d dist %.2g, ", qh_pointid (point), |
2135 |
qh_pointdist (point, center, dim)); |
2136 |
fprintf (qh ferr, "\n"); |
2137 |
} |
2138 |
} |
2139 |
#endif |
2140 |
} |
2141 |
if (simplex != points) |
2142 |
qh_settempfree (&simplex); |
2143 |
return center; |
2144 |
} /* voronoi_center */ |
2145 |
|