ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/samples/builders/runMe.in
Revision: 1978
Committed: Thu Mar 13 13:03:11 2014 UTC (11 years, 2 months ago) by gezelter
File size: 9217 byte(s)
Log Message:
More error message clarifications, added a few steps to the builders sample

File Contents

# Content
1 #!/bin/sh
2 OPENMD_HOME=@CMAKE_INSTALL_PREFIX@
3 # This is a collection of sample commands that can be used to build
4 # OpenMD start files. In OpenMD, the start files have a <MetaData>
5 # block to give information about the kind of simulation being performed.
6 # The start files also contain at least one <Snapshot> block which contains
7 # information about the instantaneous configuration.
8 #
9 # One of the difficult tasks in using any simulation program is figuring
10 # out how to format the start file correctly. OpenMD includes a set of
11 # "builder" programs to make that process a bit less painful.
12 #
13 # Example 1:
14 # Builds an FCC lattice from the <MetaData> block in one_component.md
15 # Uses 5 unit cells in each direction, a density of 1.0 g / cm^3, and
16 # places the output (which can be used to start an OpenMD job) in
17 # FCC.md
18 #
19 # Note that builders will rewrite the number of molecules in each component
20 # to match the number of lattice sites.
21 #
22 # The thermalizer command takes the FCC.md file and resamples the velocities
23 # from a Maxwell-Boltzmann distribution set to 100K:
24 #
25 ${OPENMD_HOME}/bin/simpleBuilder -o FCC.md --nx=5 --ny=5 --nz=5 --density=1.0 one_component.md
26 ${OPENMD_HOME}/bin/thermalizer -o FCC-100K.md -t 100 FCC.md
27 ${OPENMD_HOME}/bin/Dump2XYZ -i FCC-100K.md
28 #
29 # Example 2:
30 # Builds an FCC lattice from the <MetaData> block in three_component.md
31 # uses 4 unit cells in each direction, a density of 1.0 g / cm^3, and
32 # molFractions of 0.4, 0.4, and 0.2 for the three components. Places
33 # the output (which can be used to start an OpenMD job) in random_FCC.md
34 #
35 # Note that builders will rewrite the number of molecules in each component
36 # to match the number of lattice sites.
37 #
38 ${OPENMD_HOME}/bin/randomBuilder -o random_FCC.md --nx=4 --ny=4 --nz=4 --density=1.0 --molFraction=0.4 --molFraction=0.4 three_component.md
39 ${OPENMD_HOME}/bin/thermalizer -o random_FCC-100K.md -t 100 random_FCC.md
40 ${OPENMD_HOME}/bin/Dump2XYZ -i random_FCC-100K.md
41 #
42 # Example 3:
43 # Builds a spherical nanoparticle (FCC) from the <MetaData> block in gold.md
44 # using a particle radius of 30 Angstroms, and a lattice constant of 4.09
45 # angstroms. Places the output (which can be used to start an OpenMD job) in
46 # gold_sphere.md
47 #
48 # Note that builders will rewrite the number of molecules in each component
49 # to match the number of lattice sites.
50 #
51 ${OPENMD_HOME}/bin/nanoparticleBuilder -o gold_sphere.md --radius=30.0 --latticeConstant=4.09 gold.md
52 ${OPENMD_HOME}/bin/thermalizer -o gold_sphere-500K.md -t 500.0 gold_sphere.md
53 ${OPENMD_HOME}/bin/Dump2XYZ -i gold_sphere-500K.md
54 #
55 # Example 4:
56 # Builds a random alloy spherical nanoparticle (FCC) from the <MetaData>
57 # block in bimetallic.md using a particle radius of 30 Angstroms, a
58 # lattice constant of 4.09 angstroms, and a mole fraction for the gold of 0.4.
59 # Places the output (which can be used to start an OpenMD job) in
60 # Au_Ag_alloy.md
61 #
62 # Note that builders will rewrite the number of molecules in each component
63 # to match the number of lattice sites.
64 #
65 ${OPENMD_HOME}/bin/nanoparticleBuilder -o Au_Ag_alloy.md --radius=30.0 --latticeConstant=4.09 --molFraction=0.4 bimetallic.md
66 ${OPENMD_HOME}/bin/thermalizer -o Au_Ag_alloy-600K.md -t 600 Au_Ag_alloy.md
67 ${OPENMD_HOME}/bin/Dump2XYZ -i Au_Ag_alloy-600K.md
68 #
69 # Example 5:
70 # Builds a Au(core)-Ag(shell) spherical nanoparticle (FCC) from the <MetaData>
71 # block in bimetallic.md using a particle radius of 25 Angstroms, a
72 # lattice constant of 4.09 angstroms, and a core radius for the gold atoms
73 # of 12.5 angstroms. Places the output (which can be used to start an
74 # OpenMD job) in Au(core)-Ag(shell).md
75 #
76 # Note that builders will rewrite the number of molecules in each component
77 # to match the number of lattice sites.
78 #
79 ${OPENMD_HOME}/bin/nanoparticleBuilder -o Au-core-Ag-shell.md --radius=30.0 --latticeConstant=4.09 --shellRadius=12.5 bimetallic.md
80 ${OPENMD_HOME}/bin/thermalizer -o Au-core-Ag-shell-800K.md -t 800.0 Au-core-Ag-shell.md
81 ${OPENMD_HOME}/bin/Dump2XYZ -i Au-core-Ag-shell-800K.md
82 #
83 # Example 6:
84 # Reverses example 5 by building a Ag(core)-Au(shell) spherical nanoparticle.
85 # Uses the same <MetaData> block from bimetallic.md,
86 # a particle radius of 25 Angstroms, a lattice constant of 4.09 angstroms,
87 # and a core radius for the silver atoms of 12.5 angstroms.
88 # Places the output (which can be used to start an OpenMD job) in
89 # Ag(core)-Au(shell).md
90 #
91 # Note that the last radius in Example 5 was taken as the particle radius,
92 # but since the components are reversed in this example, both are specified:
93 #
94 #
95 ${OPENMD_HOME}/bin/nanoparticleBuilder -o Ag-core-Au-shell.md --radius=30.0 --latticeConstant=4.09 --shellRadius=30.0,12.5 bimetallic.md
96 ${OPENMD_HOME}/bin/thermalizer -o Ag-core-Au-shell-800K.md -t 800.0 Ag-core-Au-shell.md
97 ${OPENMD_HOME}/bin/Dump2XYZ -i Ag-core-Au-shell-800K.md
98 #
99 # Example 7:
100 # Builds a Au(core)-Ag(shell) spherical nanoparticle (FCC) from the <MetaData>
101 # block in bimetallic.md using a particle radius of 25 Angstroms, a
102 # lattice constant of 4.09 angstroms, and a core radius for the gold atoms
103 # of 12.5 angstroms. Places the output (which can be used to start an
104 # OpenMD job) in Au(core)-Ag(shell).md
105 #
106 # This example also introduces 70% vacancies in a 6 angstrom radial band
107 # around the bimetallic interface:
108 #
109 ${OPENMD_HOME}/bin/nanoparticleBuilder -o vacancy_interface.md --radius=20.0 --latticeConstant=4.09 --shellRadius=12.5 --vacancyPercent=70 --vacancyInnerRadius=9.5 --vacancyOuterRadius=15.5 bimetallic.md
110 ${OPENMD_HOME}/bin/thermalizer -o vacancy_interface-800K.md -t 800 vacancy_interface.md
111 ${OPENMD_HOME}/bin/Dump2XYZ -i vacancy_interface-800K.md
112 #
113 # Example 8:
114 # Builds a random alloy spherical nanoparticle with 30% vacancies using the
115 # <MetaData> block in bimetallic.md, a particle radius of 30 Angstroms, a
116 # lattice constant of 4.09 angstroms, and a mole fraction for the gold of 0.4.
117 # Places the output (which can be used to start an OpenMD job) in
118 # vacancy_alloy.md
119 #
120 ${OPENMD_HOME}/bin/nanoparticleBuilder -o vacancy_alloy.md --radius=30.0 --latticeConstant=4.09 --molFraction=0.4 --vacancyPercent=80 bimetallic.md
121 ${OPENMD_HOME}/bin/thermalizer -o vacancy_alloy-900K.md -t 900 vacancy_alloy.md
122 ${OPENMD_HOME}/bin/Dump2XYZ -i vacancy_alloy-900K.md
123 #
124 #Example 9:
125 # Builds a spherically-capped nanorod (FCC) from the <MetaData> block in gold.md
126 # using a nanorod radius of 20 Angstroms, a length of 50 Angstroms and a lattice constant of 4.08
127 # angstroms. Places the output (which can be used to start an OpenMD job) in
128 # gold_fccrod.md
129 #
130 # Note that builders will rewrite the number of molecules in each component
131 # to match the number of lattice sites.
132 #
133 ${OPENMD_HOME}/bin/nanorodBuilder -o gold_fccrod.md --radius=20.0 --length=50.0 --latticeConstant=4.08 gold.md
134 ${OPENMD_HOME}/bin/Dump2XYZ -i gold_fccrod.md
135 #
136 #Example 10:
137 # Builds a pentagonal nanorod from the <MetaData> block in gold.md
138 # using a nanorod radius of 15 Angstroms, a length of 64 Angstroms and a lattice constant of 4.08
139 # angstroms. Places the output (which can be used to start an OpenMD job) in
140 # gold_pentrod.md
141 #
142 # Note that builders will rewrite the number of molecules in each component
143 # to match the number of lattice sites.
144 #
145 ${OPENMD_HOME}/bin/nanorod_pentBuilder -o gold_pentrod.md --radius=15.0 --length=64.0 --latticeConstant=4.08 gold.md
146 ${OPENMD_HOME}/bin/Dump2XYZ -i gold_pentrod.md
147 #
148 #Example 11:
149 # Builds a Mackay icosahedral nanoparticle from the <MetaData> block in gold.md
150 # using a 8 shells, and a lattice constant of 4.08 angstroms.
151 # Places the output (which can be used to start an OpenMD job) in
152 # gold_ico.md
153 #
154 # Note that builders will rewrite the number of molecules in each component
155 # to match the number of lattice sites.
156 #
157 ${OPENMD_HOME}/bin/icosahedralBuilder --ico -o gold_ico.md --shells=8 --latticeConstant=4.08 gold.md
158 ${OPENMD_HOME}/bin/thermalizer -o gold_ico_300K.md -t 300 gold_ico.md
159 ${OPENMD_HOME}/bin/Dump2XYZ -i gold_ico_300K.md
160 #
161 #Example 12:
162 # Builds a regular decahedral nanoparticle from the <MetaData> block in gold.md
163 # using a 10 shells, and a lattice constant of 4.08 angstroms.
164 # Places the output (which can be used to start an OpenMD job) in
165 # gold_deca.md
166 #
167 # Note that builders will rewrite the number of molecules in each component
168 # to match the number of lattice sites.
169 #
170 ${OPENMD_HOME}/bin/icosahedralBuilder --deca -o gold_deca.md --shells=10 --latticeConstant=4.08 gold.md
171 ${OPENMD_HOME}/bin/thermalizer -o gold_deca_300.md -t 300 gold_deca.md
172 ${OPENMD_HOME}/bin/Dump2XYZ -i gold_deca_300.md
173 #
174 #Example 13:
175 # Builds a ino-decahedral nanorod from the <MetaData> block in gold.md
176 # using a 10 shells, 5 atoms along the twin boundary, 100 atoms along the
177 # column axis, and a lattice constant of 4.08 angstroms.
178 # Places the output (which can be used to start an OpenMD job) in
179 # penta_rod.md
180 #
181 # Note that builders will rewrite the number of molecules in each component
182 # to match the number of lattice sites.
183 #
184 ${OPENMD_HOME}/bin/icosahedralBuilder --ino --columnAtoms=100 --twinAtoms=5 --shells=10 -d 4.08 -o penta_rod.md gold.md
185 ${OPENMD_HOME}/bin/thermalizer -o gold_penta_rod_300.md -t 300 penta_rod.md
186 ${OPENMD_HOME}/bin/Dump2XYZ -i gold_penta_rod_300.md