1 |
#! /usr/bin/env python |
2 |
|
3 |
"""Quadrupolar Lattice Builder |
4 |
|
5 |
Creates cubic lattices of quadrupoles to test the |
6 |
quadrupole-quadrupole interaction code. |
7 |
|
8 |
Usage: buildQuadrupolarArray |
9 |
|
10 |
Options: |
11 |
-h, --help show this help |
12 |
-x, --array-type-X use one of the basic "X" arrays |
13 |
-y, --array-type-Y use one of the basic "Y" arrays |
14 |
-z, --array-type-Z use one of the basic "Z" arrays |
15 |
-l, --lattice=... use the specified lattice ( SC, FCC, or BCC ) |
16 |
-c, --constant=... use the specified lattice constant |
17 |
-n use the specified number of unit cells |
18 |
-o, --output-file=... use specified output (.xyz) file |
19 |
|
20 |
Type "A" arrays have nearest neighbor strings of antiparallel dipoles. |
21 |
|
22 |
Type "B" arrays have nearest neighbor strings of antiparallel dipoles |
23 |
if the dipoles are contained in a plane perpendicular to the dipole |
24 |
direction that passes through the dipole. |
25 |
|
26 |
Example: |
27 |
buildQuadrupolarArray -l fcc -c 5 -n 3 -o FCC.md |
28 |
|
29 |
""" |
30 |
|
31 |
__author__ = "Dan Gezelter (gezelter@nd.edu)" |
32 |
__version__ = "$Rev: 1914 $" |
33 |
__date__ = "$LastChangedDate: 2013-07-29 11:34:04 -0400 (Mon, 29 Jul 2013) $" |
34 |
|
35 |
__copyright__ = "Copyright (c) 2013 by the University of Notre Dame" |
36 |
__license__ = "OpenMD" |
37 |
|
38 |
import sys |
39 |
import getopt |
40 |
import string |
41 |
import math |
42 |
import numpy |
43 |
|
44 |
def usage(): |
45 |
print __doc__ |
46 |
|
47 |
def createLattice(latticeType, latticeNumber, latticeConstant, arrayType, outputFileName): |
48 |
# The following section creates 24 basic arrays from Luttinger and |
49 |
# Tisza: |
50 |
|
51 |
# The six unit vectors are: 3 spatial and 3 to describe the |
52 |
# orientation of the dipole. |
53 |
|
54 |
e1 = numpy.array([1.0,0.0,0.0]) |
55 |
e2 = numpy.array([0.0,1.0,0.0]) |
56 |
e3 = numpy.array([0.0,0.0,1.0]) |
57 |
|
58 |
# Parameters describing the 8 basic arrays: |
59 |
cell = numpy.array([[0,0,0],[0,0,1],[1,0,0],[0,1,0], |
60 |
[1,1,0],[0,1,1],[1,0,1],[1,1,1]]) |
61 |
# order in which the basic arrays are constructed in the l loops below: |
62 |
corners = numpy.array([[0,0,0],[0,0,1],[0,1,0],[0,1,1], |
63 |
[1,0,0],[1,0,1],[1,1,0],[1,1,1]]) |
64 |
|
65 |
X = numpy.zeros(192).reshape((8,8,3)) |
66 |
Y = numpy.zeros(192).reshape((8,8,3)) |
67 |
Z = numpy.zeros(192).reshape((8,8,3)) |
68 |
|
69 |
# create the 24 basic arrays using Eq. 12 in Luttinger & Tisza: |
70 |
for i in range(8): |
71 |
# The X and Y arrays are cubic rotations of the Z array, so we |
72 |
# need to re-order them to match the numbering scheme in |
73 |
# Luttinger & Tisza: |
74 |
if (i > 0 and i < 4): |
75 |
iX = 1 + (i + 1) % 3 |
76 |
iY = 1 + (i ) % 3 |
77 |
elif (i > 3 and i < 7): |
78 |
iX = 4 + (i - 2) % 3 |
79 |
iY = 4 + (i ) % 3 |
80 |
else: |
81 |
iX = i |
82 |
iY = i |
83 |
which = 0 |
84 |
for l1 in range(2): |
85 |
for l2 in range(2): |
86 |
for l3 in range(2): |
87 |
lvals = numpy.array([l1,l2,l3]) |
88 |
value = math.pow(-1, numpy.dot(cell[i], lvals)) |
89 |
X[iX][which] = value * e1 |
90 |
Y[iY][which] = value * e2 |
91 |
Z[i][which] = value * e3 |
92 |
which = which+1 |
93 |
|
94 |
lp_array = numpy.zeros(0).reshape((0,3)) |
95 |
for i in range(8): |
96 |
lp_array = numpy.vstack((lp_array, corners[i])) |
97 |
|
98 |
bc_array = numpy.zeros(0).reshape((0,3)) |
99 |
for i in range(8): |
100 |
bc_array = numpy.vstack((bc_array, corners[i] + [0.5,0.5,0.5])) |
101 |
|
102 |
xy_array = numpy.zeros(0).reshape((0,3)) |
103 |
for i in range(8): |
104 |
xy_array = numpy.vstack((xy_array, corners[i] + [0.5,0.5,0.0])) |
105 |
|
106 |
xz_array = numpy.zeros(0).reshape((0,3)) |
107 |
for i in range(8): |
108 |
xz_array = numpy.vstack((xz_array, corners[i] + [0.5,0.0,0.5])) |
109 |
|
110 |
yz_array = numpy.zeros(0).reshape((0,3)) |
111 |
for i in range(8): |
112 |
yz_array = numpy.vstack((yz_array, corners[i] + [0.0,0.5,0.5])) |
113 |
|
114 |
known_case = False |
115 |
basic_array = numpy.zeros(0).reshape((0,3,3)) |
116 |
|
117 |
lp_part = numpy.zeros(0).reshape((0,3,3)) |
118 |
bc_part = numpy.zeros(0).reshape((0,3,3)) |
119 |
xy_part = numpy.zeros(0).reshape((0,3,3)) |
120 |
xz_part = numpy.zeros(0).reshape((0,3,3)) |
121 |
yz_part = numpy.zeros(0).reshape((0,3,3)) |
122 |
|
123 |
if (arrayType == 'X'): |
124 |
if (int(latticeType)): |
125 |
which = int(latticeType) - 1 |
126 |
basic_array = numpy.append(lp_array, X[which], axis=1) |
127 |
known_case = True |
128 |
if (arrayType == 'Y'): |
129 |
if (int(latticeType)): |
130 |
which = int(latticeType) - 1 |
131 |
basic_array = numpy.append(lp_array, Y[which], axis=1) |
132 |
known_case = True |
133 |
if (arrayType == 'Z'): |
134 |
if (int(latticeType)): |
135 |
which = int(latticeType) - 1 |
136 |
basic_array = numpy.append(lp_array, Z[which], axis=1) |
137 |
known_case = True |
138 |
if (latticeType.lower() == 'sc'): |
139 |
lp_part = numpy.append(lp_array, X[0]+Y[0]+Z[0], axis=1) |
140 |
basic_array = lp_part |
141 |
known_case = True |
142 |
if (latticeType.lower() == 'bcc'): |
143 |
lp_part = numpy.append(lp_array, X[0]+Y[0], axis=1) |
144 |
bc_part = numpy.append(bc_array, X[0]-Y[0], axis=1) |
145 |
basic_array = numpy.append(lp_part, bc_part, axis=0) |
146 |
known_case = True |
147 |
if (latticeType.lower() == 'fcc'): |
148 |
lp_part = numpy.append(lp_array, X[0]+Y[0]+Z[0], axis=1) |
149 |
xy_part = numpy.append(xy_array, X[0]-Y[0]-Z[0], axis=1) |
150 |
xz_part = numpy.append(xz_array, -X[0]-Y[0]+Z[0], axis=1) |
151 |
yz_part = numpy.append(yz_array, -X[0]+Y[0]-Z[0], axis=1) |
152 |
basic_array = numpy.append(lp_part, xy_part, axis=0) |
153 |
basic_array = numpy.append(basic_array, xz_part, axis=0) |
154 |
basic_array = numpy.append(basic_array, yz_part, axis=0) |
155 |
|
156 |
known_case = True |
157 |
|
158 |
|
159 |
if (not known_case): |
160 |
print "unhandled combination of lattice and dipole direction" |
161 |
print __doc__ |
162 |
|
163 |
bravais_lattice = numpy.zeros(0).reshape((0,6)) |
164 |
for i in range(latticeNumber): |
165 |
for j in range(latticeNumber): |
166 |
for k in range(latticeNumber): |
167 |
for l in range(len(basic_array)): |
168 |
lat_vec = numpy.array([[2*i, 2*j, 2*k, 0.0, 0.0, 0.0]]) |
169 |
bravais_lattice = numpy.append(bravais_lattice, lat_vec + basic_array[l], axis=0) |
170 |
|
171 |
outputFile = open(outputFileName, 'w') |
172 |
|
173 |
outputFile.write('<OpenMD version=2>\n') |
174 |
outputFile.write(' <MetaData>\n') |
175 |
outputFile.write(' molecule{\n') |
176 |
outputFile.write(' name = \"Q\";\n') |
177 |
outputFile.write(' \n') |
178 |
outputFile.write(' atom[0]{\n') |
179 |
outputFile.write(' type = \"Q\";\n') |
180 |
outputFile.write(' position(0.0, 0.0, 0.0);\n') |
181 |
outputFile.write(' orientation(0.0, 0.0, 0.0);\n') |
182 |
outputFile.write(' }\n') |
183 |
outputFile.write(' }\n') |
184 |
outputFile.write(' component{\n') |
185 |
outputFile.write(' type = \"Q\";\n') |
186 |
outputFile.write(' nMol = '+ repr(len(bravais_lattice)) + ';\n') |
187 |
outputFile.write(' }\n') |
188 |
|
189 |
outputFile.write(' ensemble = NVE;\n') |
190 |
outputFile.write(' forceField = \"Multipole\";\n') |
191 |
|
192 |
outputFile.write(' cutoffMethod = \"shifted_force\";\n') |
193 |
outputFile.write(' electrostaticScreeningMethod = \"damped\";\n') |
194 |
|
195 |
outputFile.write(' cutoffRadius = 9.0;\n') |
196 |
outputFile.write(' dampingAlpha = 0.18;\n') |
197 |
outputFile.write(' statFileFormat = \"TIME|TOTAL_ENERGY|POTENTIAL_ENERGY|KINETIC_ENERGY|TEMPERATURE|PRESSURE|VOLUME|CONSERVED_QUANTITY|ELECTROSTATIC_POTENTIAL\";\n') |
198 |
outputFile.write(' dt = 1.0;\n') |
199 |
outputFile.write(' runTime = 1.0;\n') |
200 |
outputFile.write(' sampleTime = 1.0;\n') |
201 |
outputFile.write(' statusTime = 1.0;\n') |
202 |
outputFile.write(' </MetaData>\n') |
203 |
outputFile.write(' <Snapshot>\n') |
204 |
outputFile.write(' <FrameData>\n'); |
205 |
outputFile.write(" Time: %.10g\n" % (0.0)) |
206 |
|
207 |
Hxx = 2.0 * latticeConstant * latticeNumber |
208 |
Hyy = 2.0 * latticeConstant * latticeNumber |
209 |
Hzz = 2.0 * latticeConstant * latticeNumber |
210 |
|
211 |
outputFile.write(' Hmat: {{%d, 0, 0}, {0, %d, 0}, {0, 0, %d}}\n' % (Hxx, Hyy, Hzz)) |
212 |
outputFile.write(' </FrameData>\n') |
213 |
outputFile.write(' <StuntDoubles>\n') |
214 |
sdFormat = 'pvqj' |
215 |
index = 0 |
216 |
|
217 |
for i in range(len(bravais_lattice)): |
218 |
xcart = latticeConstant*(bravais_lattice[i][0]) |
219 |
ycart = latticeConstant*(bravais_lattice[i][1]) |
220 |
zcart = latticeConstant*(bravais_lattice[i][2]) |
221 |
dx = bravais_lattice[i][3] |
222 |
dy = bravais_lattice[i][4] |
223 |
dz = bravais_lattice[i][5] |
224 |
|
225 |
dlen = math.sqrt(dx*dx + dy*dy + dz*dz) |
226 |
ctheta = dz / dlen |
227 |
theta = math.acos(ctheta) |
228 |
stheta = math.sqrt(1.0 - ctheta*ctheta) |
229 |
psi = 0.0 |
230 |
phi = math.atan2(dx/dlen, -dy/dlen) |
231 |
|
232 |
q = [0.0,0.0,0.0,0.0] |
233 |
q[0] = math.cos(theta/2)*math.cos((phi+psi)/2) |
234 |
q[1] = math.sin(theta/2)*math.cos((phi-psi)/2) |
235 |
q[2] = math.sin(theta/2)*math.sin((phi-psi)/2) |
236 |
q[3] = math.cos(theta/2)*math.sin((phi+psi)/2) |
237 |
|
238 |
qlen = math.sqrt(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]) |
239 |
q[0] = q[0]/qlen |
240 |
q[1] = q[1]/qlen |
241 |
q[2] = q[2]/qlen |
242 |
q[3] = q[3]/qlen |
243 |
|
244 |
outputFile.write("%10d %7s %g %g %1g %g %g %g %13e %13e %13e %13e %g %g %g\n" % (index, sdFormat, xcart, ycart, zcart, 0.0, 0.0, 0.0, q[0], q[1], q[2], q[3], 0.0, 0.0, 0.0)) |
245 |
index = index+1 |
246 |
|
247 |
outputFile.write(" </StuntDoubles>\n") |
248 |
outputFile.write(" </Snapshot>\n") |
249 |
outputFile.write("</OpenMD>\n") |
250 |
outputFile.close() |
251 |
|
252 |
outputFile.close() |
253 |
|
254 |
def main(argv): |
255 |
|
256 |
arrayType = "A" |
257 |
haveOutputFileName = False |
258 |
latticeType = "fcc" |
259 |
latticeNumber = 3 |
260 |
latticeConstant = 4 |
261 |
try: |
262 |
opts, args = getopt.getopt(argv, "hxyzl:c:n:o:", ["help","array-type-X", "array-type-Y", "array-type-Z", "lattice=", "constant=", "output-file="]) |
263 |
except getopt.GetoptError: |
264 |
usage() |
265 |
sys.exit(2) |
266 |
for opt, arg in opts: |
267 |
if opt in ("-h", "--help"): |
268 |
usage() |
269 |
sys.exit() |
270 |
elif opt in ("-x", "--array-type-X"): |
271 |
arrayType = "X" |
272 |
elif opt in ("-y", "--array-type-Y"): |
273 |
arrayType = "Y" |
274 |
elif opt in ("-z", "--array-type-Z"): |
275 |
arrayType = "Z" |
276 |
elif opt in ("-l", "--lattice"): |
277 |
latticeType = arg |
278 |
elif opt in ("-c", "--constant"): |
279 |
latticeConstant = float(arg) |
280 |
elif opt in ("-n"): |
281 |
latticeNumber = int(arg) |
282 |
elif opt in ("-o", "--output-file"): |
283 |
outputFileName = arg |
284 |
haveOutputFileName = True |
285 |
if (not haveOutputFileName): |
286 |
usage() |
287 |
print "No output file was specified" |
288 |
sys.exit() |
289 |
|
290 |
createLattice(latticeType, latticeNumber, latticeConstant, arrayType, outputFileName); |
291 |
|
292 |
if __name__ == "__main__": |
293 |
if len(sys.argv) == 1: |
294 |
usage() |
295 |
sys.exit() |
296 |
main(sys.argv[1:]) |